Hyper-Fibonacci and Hyper-Lucas Hybrinomials
Year 2022,
Volume: 10 Issue: 2, 293 - 300, 31.10.2022
Efruz Özlem Mersin
,
Mustafa Bahşi
Abstract
The hybrid numbers which are accepted as a generalization of complex, hyperbolic and dual numbers, have attracted the attention of many researchers recently. In this paper hyper-Fibonacci and hyper-Lucas hybrinomials are defined. The recurrence relations, generation functions, as well as some algebraic and combinatoric properties are examined for newly defined hybrinomials.
References
- [1] T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and
Tracts, New York: Wiley 2001.
- [2] G. Bilici, New generalization of Fibonacci and Lucas sequences, Applied Mathematical Sciences 8(19) (2014) 1429-1437.
- [3] O. Yayenie, A note on generalized Fibonacci sequences, Applied Mathematics and Computation 217 (2011) 5603-5611.
- [4] M. Edson and O. Yayenie, A new generalization of Fibonacci sequences and extended Binet’s formula, Integers 9(6) (2009) 639-654.
- [5] S. Falcon, and A. Plaza, On the Fibonacci k-numbers, Chaos, Solitons and Fractals 32(5) (2007) 1615-1624.
- [6] C. K¨ome, Y. Yazlık and V. Mathusudanan, A new generalization of Fibonacci and Lucas p- numbers, Journal of Computational Analysis and Applications
25(4) (2018) 667-669.
- [7] A.F. Horadam, A generalized Fibonacci sequence, The American Mathematical Monthly 68(5) (1961) 455-459.
- [8] G.Y. Lee and S.G. Lee, A note on generalized Fibonacci numbers, The Fibonacci Quarterly 33(3) (1995) 273-278.
- [9] A.A. O¨ cal, N. Tuglu and E. Altinis¸ik, On the representation of k-generalized Fibonacci and Lucas numbers, Applied Mathematics and Computation
170(1) (2005) 584-596.
- [10] A. Dil and I. Mez˝o, A symmetric algorithm hyperharmonic and Fibonacci numbers, Applied Mathematics and Computation 206 (2008) 942-951.
- [11] M. Bahs¸i, I. Mez˝o and S. Solak, A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers, Annales Mathematicae et Informaticae 43
(2014) 19-27.
- [12] E. Polatlı, Hybrid numbers with Fibonacci and Lucas hybrid number coefficients, Preprints (2020), 2020120349.
- [13] G. Cerda-Morales, Investigation of generalized Fibonacci hybrid numbers and their properties, Applied Mathematics E-notes 21 (2021) 110-118.
- [14] E.G. Koc¸er and H. Alsan, Generalized hybrid Fibonacci and Lucas p- numbers, Indian Journal of Pure and Applied Mathematics (2021).
https://doi.org/10.1007/s13226-021-00201-w
- [15] E. Polatlı, A note on ratios of Fibonacci hybrid and Lucas hybrid numbers, Notes on Number Theory and Discrete Mathematics 27(3) (2021) 73-78.
doi:10.7546/nntdm.2021.27.3.73-78
- [16] N. Yilmaz, More identities on Fibonacci and Lucas hybrid numbers, Notes on Number Theory and Discrete Mathematics, 27 (2), (2021) 159–167.
https://doi.org/10.7546/nntdm.2021.27.2.159-167
- [17] A.Szynal-Liana and I. Wloch, The Fibonacci hybrid numbers, Utilitas Mathematica, 110, 3–10, (2019).
- [18] C. Kızılates¸, A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos, Solitons and Fractals, 130 (2020) 109449.
https://doi.org/10.1016/j.chaos.2019.109449
- [19] M. Asci and S. Aydinyuz, Generalized k-order Fibonacci and Lucas hybrid numbers, Journal of Information and Optimization Sciences 42(8) (2021)
1765-1782. https://doi.org/10.1080/02522667.2021.1946238
- [20] A. Szynal-Liana and I. Wloch, Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations 65(10) (2020) 1736-1747.
- [21] A. Szynal-Liana and I. Wloch, Generalized Fibonacci-Pell hybrinomials, Online Journal of Analytic Combinatorics 15 (2020), 1-12.
- [22] M. O¨ zdemir, Introduction to hybrid numbers, Advances in Applied Clifford Algebras 28(11) (2018). https://doi.org/10.1007/s00006-018-0833-3
- [23] C. Kızılates¸ and T. Kone, On special spacelike hybrid numbers with Fibonacci divisor number components, Indian Journal of Pure and Applied
Mathematics (2022). https://doi.org/10.1007/s13226-022-00252-7
- [24] A. Szynal-Liana, The Horadam hybrid numbers, Discussiones Mathematicae General Algebra and Applications 38 (2018) 91-98. doi: 10.7151/dmgaa.
1287
- [25] N. Kilic, Introduction to k- Horadam hybrid numbers, Kuwait Journal of Science (2021). https://doi.org/10.48129/kjs.14929
- [26] C. Kızılates¸, A note on Horadam hybrinomials, Fundamental Journal of Mathematics and Applications 5(1) (2022) 1-9.
https://doi.org/10.33401/fujma.993546
- [27] E. Sevgi, The generalized Lucas hybrinomials with two variables, Communications Faculty of Sciences University of Ankara Series A1 Mathematics
and Statistics 70(2) (2021) 622-630. https://doi.org/10.31801/cfsuasmas.854761
- [28] D. Dumont, Matrices d’Euler-Seidel, Seminaire Lotharingien de Combinatorie 1981, B05c.
- [29] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley 1993.
Year 2022,
Volume: 10 Issue: 2, 293 - 300, 31.10.2022
Efruz Özlem Mersin
,
Mustafa Bahşi
References
- [1] T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and
Tracts, New York: Wiley 2001.
- [2] G. Bilici, New generalization of Fibonacci and Lucas sequences, Applied Mathematical Sciences 8(19) (2014) 1429-1437.
- [3] O. Yayenie, A note on generalized Fibonacci sequences, Applied Mathematics and Computation 217 (2011) 5603-5611.
- [4] M. Edson and O. Yayenie, A new generalization of Fibonacci sequences and extended Binet’s formula, Integers 9(6) (2009) 639-654.
- [5] S. Falcon, and A. Plaza, On the Fibonacci k-numbers, Chaos, Solitons and Fractals 32(5) (2007) 1615-1624.
- [6] C. K¨ome, Y. Yazlık and V. Mathusudanan, A new generalization of Fibonacci and Lucas p- numbers, Journal of Computational Analysis and Applications
25(4) (2018) 667-669.
- [7] A.F. Horadam, A generalized Fibonacci sequence, The American Mathematical Monthly 68(5) (1961) 455-459.
- [8] G.Y. Lee and S.G. Lee, A note on generalized Fibonacci numbers, The Fibonacci Quarterly 33(3) (1995) 273-278.
- [9] A.A. O¨ cal, N. Tuglu and E. Altinis¸ik, On the representation of k-generalized Fibonacci and Lucas numbers, Applied Mathematics and Computation
170(1) (2005) 584-596.
- [10] A. Dil and I. Mez˝o, A symmetric algorithm hyperharmonic and Fibonacci numbers, Applied Mathematics and Computation 206 (2008) 942-951.
- [11] M. Bahs¸i, I. Mez˝o and S. Solak, A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers, Annales Mathematicae et Informaticae 43
(2014) 19-27.
- [12] E. Polatlı, Hybrid numbers with Fibonacci and Lucas hybrid number coefficients, Preprints (2020), 2020120349.
- [13] G. Cerda-Morales, Investigation of generalized Fibonacci hybrid numbers and their properties, Applied Mathematics E-notes 21 (2021) 110-118.
- [14] E.G. Koc¸er and H. Alsan, Generalized hybrid Fibonacci and Lucas p- numbers, Indian Journal of Pure and Applied Mathematics (2021).
https://doi.org/10.1007/s13226-021-00201-w
- [15] E. Polatlı, A note on ratios of Fibonacci hybrid and Lucas hybrid numbers, Notes on Number Theory and Discrete Mathematics 27(3) (2021) 73-78.
doi:10.7546/nntdm.2021.27.3.73-78
- [16] N. Yilmaz, More identities on Fibonacci and Lucas hybrid numbers, Notes on Number Theory and Discrete Mathematics, 27 (2), (2021) 159–167.
https://doi.org/10.7546/nntdm.2021.27.2.159-167
- [17] A.Szynal-Liana and I. Wloch, The Fibonacci hybrid numbers, Utilitas Mathematica, 110, 3–10, (2019).
- [18] C. Kızılates¸, A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos, Solitons and Fractals, 130 (2020) 109449.
https://doi.org/10.1016/j.chaos.2019.109449
- [19] M. Asci and S. Aydinyuz, Generalized k-order Fibonacci and Lucas hybrid numbers, Journal of Information and Optimization Sciences 42(8) (2021)
1765-1782. https://doi.org/10.1080/02522667.2021.1946238
- [20] A. Szynal-Liana and I. Wloch, Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations 65(10) (2020) 1736-1747.
- [21] A. Szynal-Liana and I. Wloch, Generalized Fibonacci-Pell hybrinomials, Online Journal of Analytic Combinatorics 15 (2020), 1-12.
- [22] M. O¨ zdemir, Introduction to hybrid numbers, Advances in Applied Clifford Algebras 28(11) (2018). https://doi.org/10.1007/s00006-018-0833-3
- [23] C. Kızılates¸ and T. Kone, On special spacelike hybrid numbers with Fibonacci divisor number components, Indian Journal of Pure and Applied
Mathematics (2022). https://doi.org/10.1007/s13226-022-00252-7
- [24] A. Szynal-Liana, The Horadam hybrid numbers, Discussiones Mathematicae General Algebra and Applications 38 (2018) 91-98. doi: 10.7151/dmgaa.
1287
- [25] N. Kilic, Introduction to k- Horadam hybrid numbers, Kuwait Journal of Science (2021). https://doi.org/10.48129/kjs.14929
- [26] C. Kızılates¸, A note on Horadam hybrinomials, Fundamental Journal of Mathematics and Applications 5(1) (2022) 1-9.
https://doi.org/10.33401/fujma.993546
- [27] E. Sevgi, The generalized Lucas hybrinomials with two variables, Communications Faculty of Sciences University of Ankara Series A1 Mathematics
and Statistics 70(2) (2021) 622-630. https://doi.org/10.31801/cfsuasmas.854761
- [28] D. Dumont, Matrices d’Euler-Seidel, Seminaire Lotharingien de Combinatorie 1981, B05c.
- [29] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley 1993.