Research Article
BibTex RIS Cite
Year 2022, Volume: 10 Issue: 2, 326 - 331, 31.10.2022

Abstract

References

  • [1] Akc¸a, ˙I., Pak S.: Pseudo simplicial groups and crossed modules, Turk J. Math., 34, 475-487 (2010).
  • [2] Arvasi, Z., Porter, T.: Simplicial and crossed resolutions of commutative algebras, Journal of Algebra, 181, 426-428 (1996).
  • [3] Z.ARVASI and U.EGE. Annihilators, Multipliers and Crossed Modules, Applied Categorical Structures, Vol.11, 487-506, (2003).
  • [4] Arvasi, Z., Porter, T.: Freeness conditions of 2-crossed modules of commutative algebras, Applied Categrical Structures, 6, 455-471 (1998).
  • [5] Baues, H. J.: Combinatorial homotopy and 4-dimensional complexes, Walter de Gruyter 1991.
  • [6] J. Baues, H.: Homotopy Types, Handbook of Algebraic Topology, Edited by I. M. James, Elsevier, 1-72 (1995).
  • [7] Brown, R., Higgins, P.J.: Colimit- theorems for relative homotopy groups, Jour. Pure Appl. Algebra, 22, 11 - 41 (1981).
  • [8] Conduche, D.: Modules croises generalises de Longueur 2, J.Pure Appl. Algebra, 34, 155-178 (1984).
  • [9] Duskin, J.: Simplicials Methods and the Interpretation of Triple Cohomology, Memoirs A.M.S., Vol.3 163, (1975).
  • [10] Inasaridze, H. N.: Homotopy of pseudosimplicial groupsand nonabelian derived functors, Sakharth, SSR, Mecn. Akad. Moambe, 76, 533-536 (1974).
  • [11] Inasaridze, H. N.: Homotopy of pseudosimplicial groupsand nonabelian derived functors and algebraic K-theory, Math. Sbornik, TOM, 98, (140), No: 3, 303-323 (1975).
  • [12] Loday, J. L.: Spaces having finitely many non - trivial homotopy groups, Jour. Pure Appl. Algebra, 24, 179 - 202 (1982).
  • [13] May, J. P.: Simplicial objects in algebraic topology, Math, Studies, 11, Van Nostrand 1967.
  • [14] Milnor, J.W.: The Construction FK, Mimeographed Notes, Univ. Princeton, N.J. 1956.
  • [15] Porter T.: Homology of commutative algebras and an invariant of Simis and Vasconceles, J. Algebra, 99, 458-465 (1986).
  • [16] Whitehead, J.H.C.: Combinatorial Homotopy I and II, Bull. Amer. Math. Soc., 55, 231-245 and 453-496 (1949).

Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules

Year 2022, Volume: 10 Issue: 2, 326 - 331, 31.10.2022

Abstract

In this paper we define pseudo 2-crossed module of commutative
algebras and we give relations between the pseudo 2-crossed modules
of commutative algebras and pseudo simplicial algebras with Moore
complex of length 2.

References

  • [1] Akc¸a, ˙I., Pak S.: Pseudo simplicial groups and crossed modules, Turk J. Math., 34, 475-487 (2010).
  • [2] Arvasi, Z., Porter, T.: Simplicial and crossed resolutions of commutative algebras, Journal of Algebra, 181, 426-428 (1996).
  • [3] Z.ARVASI and U.EGE. Annihilators, Multipliers and Crossed Modules, Applied Categorical Structures, Vol.11, 487-506, (2003).
  • [4] Arvasi, Z., Porter, T.: Freeness conditions of 2-crossed modules of commutative algebras, Applied Categrical Structures, 6, 455-471 (1998).
  • [5] Baues, H. J.: Combinatorial homotopy and 4-dimensional complexes, Walter de Gruyter 1991.
  • [6] J. Baues, H.: Homotopy Types, Handbook of Algebraic Topology, Edited by I. M. James, Elsevier, 1-72 (1995).
  • [7] Brown, R., Higgins, P.J.: Colimit- theorems for relative homotopy groups, Jour. Pure Appl. Algebra, 22, 11 - 41 (1981).
  • [8] Conduche, D.: Modules croises generalises de Longueur 2, J.Pure Appl. Algebra, 34, 155-178 (1984).
  • [9] Duskin, J.: Simplicials Methods and the Interpretation of Triple Cohomology, Memoirs A.M.S., Vol.3 163, (1975).
  • [10] Inasaridze, H. N.: Homotopy of pseudosimplicial groupsand nonabelian derived functors, Sakharth, SSR, Mecn. Akad. Moambe, 76, 533-536 (1974).
  • [11] Inasaridze, H. N.: Homotopy of pseudosimplicial groupsand nonabelian derived functors and algebraic K-theory, Math. Sbornik, TOM, 98, (140), No: 3, 303-323 (1975).
  • [12] Loday, J. L.: Spaces having finitely many non - trivial homotopy groups, Jour. Pure Appl. Algebra, 24, 179 - 202 (1982).
  • [13] May, J. P.: Simplicial objects in algebraic topology, Math, Studies, 11, Van Nostrand 1967.
  • [14] Milnor, J.W.: The Construction FK, Mimeographed Notes, Univ. Princeton, N.J. 1956.
  • [15] Porter T.: Homology of commutative algebras and an invariant of Simis and Vasconceles, J. Algebra, 99, 458-465 (1986).
  • [16] Whitehead, J.H.C.: Combinatorial Homotopy I and II, Bull. Amer. Math. Soc., 55, 231-245 and 453-496 (1949).
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Sedat Pak 0000-0003-3754-1217

İbrahim İlker Akça

Publication Date October 31, 2022
Submission Date August 10, 2022
Acceptance Date September 2, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Pak, S., & Akça, İ. İ. (2022). Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules. Konuralp Journal of Mathematics, 10(2), 326-331.
AMA Pak S, Akça İİ. Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules. Konuralp J. Math. October 2022;10(2):326-331.
Chicago Pak, Sedat, and İbrahim İlker Akça. “Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules”. Konuralp Journal of Mathematics 10, no. 2 (October 2022): 326-31.
EndNote Pak S, Akça İİ (October 1, 2022) Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules. Konuralp Journal of Mathematics 10 2 326–331.
IEEE S. Pak and İ. İ. Akça, “Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules”, Konuralp J. Math., vol. 10, no. 2, pp. 326–331, 2022.
ISNAD Pak, Sedat - Akça, İbrahim İlker. “Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules”. Konuralp Journal of Mathematics 10/2 (October 2022), 326-331.
JAMA Pak S, Akça İİ. Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules. Konuralp J. Math. 2022;10:326–331.
MLA Pak, Sedat and İbrahim İlker Akça. “Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules”. Konuralp Journal of Mathematics, vol. 10, no. 2, 2022, pp. 326-31.
Vancouver Pak S, Akça İİ. Pseudo Simplicial Algebras, Crossed Modules and 2-Crossed Modules. Konuralp J. Math. 2022;10(2):326-31.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.