Research Article
BibTex RIS Cite

A Note On The Matrix Operators Of Absolute Nörlund Series Space

Year 2023, Volume: 11 Issue: 1, 8 - 14, 30.04.2023

Abstract

On the recent study, the series space $\left\vert N_{p}^{\theta }\right\vert (q )$ has been introduced as the set of all series summable by the absolute Nörlund summability method, which includes the Maddox's space $l(q )$, the absolute Cesaro space $\left\vert C_{\alpha }\right\vert _{k}$ and the absolute Nörlund space $\left\vertN_{p}^{\theta }\right\vert _{k}$, and studied in terms of some topological and algebraic properties and matrix transformations by Gökçe and Sarıgöl. In this paper, some characterizations of matrix operators between the absolute Nörlund series space $\left\vert N_{p}^{\theta }\right\vert (q )$ and the classical sequence spaces $c,c_0,l_{\infty}$ are given. Also, it is shown that the matrix operators are bounded operators. Finally, certain results are obtained as a special case.

References

  • [1] P. Z. Alp, M. I˙lkhan, On the difference sequence space$l_p (\hat T^q)$, Math. Sci. Appl. E-Notes Vol: 7, No. 2 (2019), 161-173.
  • [2] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. Vol: 7 (1957), 113-141.
  • [3] F. G¨okc¸e, Compact and Matrix Operators on the Space $\left\vert\overline N_p^{\phi}\right\vert _ {k} $. FUJMA. Vol: 4 No. 2 (2021), 124-133.
  • [4] F. G¨okc¸e, M.A. Sarıg¨ol, Some matrix and compact operators of the absolute Fibonacci series spaces. Kragujevac J. Math. Vol: 44, No.2, (2020), 273–286.
  • [5] F. G¨okc¸e, M.A. Sarıg¨ol, Series spaces derived from absolute Fibonacci summability and matrix transformations. Boll. Unione Mat. Ital. Vol: 13, (2020), 29-38.
  • [6] F. G¨okc¸e, M.A. Sarıg¨ol, On absolute Euler spaces and related matrix operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. Vol: 90 No:5 (2020), 769-775.
  • [7] F. G¨okc¸e, M.A. Sarıg¨ol, Generalization of the absolute Ces`aro space and some matrix transformations, Num. Func. Anal. Opt. Vol: 40, (2019), 1039-1052.
  • [8] F. G¨okc¸e, M.A. Sarıg¨ol, Extension of Maddox’s space l(m) with N¨orlund means, Asian-Eur. J. Math. Vol: 12 No.6 (2019), 1-12.
  • [9] F. G¨okc¸e, M.A. Sarıg¨ol, A new series space$\left\vert \overline{N}_{p}^{\theta }\right\vert \left(\mu \right) $ and matrix transformations with applications, Kuwait J. Sci. Vol:45 No:4 (2018), 1-8.
  • [10] F. G¨okc¸e, M.A. Sarıg¨ol, Generalization of the space l(p) derived by absolute Euler summability and matrix operators. J. Ineq. Appl. Vol: 2018 (2018), 133
  • [11] K.G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Mathe.Anal, Appl., Vol: (1993), 223–238.
  • [12] G. C. Hazar, M. A. Sarıg¨ol, On Absolute N¨orlund Spaces and Matrix Operators, Acta Math. Sinica, English Series Vol: 34 (2018), 812-826.
  • [13] M. Ilkhan, Matrix Domain of a Regular Matrix Derived by Euler Totient Function in the Spaces c0 and c, Mediterr. J. Math.,Vol: 17, No.1 (2020), 1-21.
  • [14] I. J. Maddox, Some properties of paranormed sequence spaces, J. London Math. Soc. Vol: 1, (1969), 316-322.
  • [15] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Math. Proc. Cambridge Philos. Soc. Vol: 64, (1968), 335-340.
  • [16] I. J. Maddox, Spaces of strongly summable sequences, The Quart. J. Math. Vol: 18, (1967), 345-355.
  • [17] E. Malkowsky, V. Rakocevic, On matrix domains of triangles. Appl.Math. Comp. Vol:189, No. 2, (2007), 1146-1163.
  • [18] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad.(Beogr), Vol:9, No.17, (2000), 143-234.
  • [19] M.A. Sarıg¨ol, Spaces of series summable by absolute Ces`aro and matrix operators, Comm. Math. Appl. Vol:7 (2016), 11-22.
  • [20] A. Wilansky, Summability Through Functional Analysis, Math. Studies, 85. North Holland , Amsterdam, (1984).
Year 2023, Volume: 11 Issue: 1, 8 - 14, 30.04.2023

Abstract

References

  • [1] P. Z. Alp, M. I˙lkhan, On the difference sequence space$l_p (\hat T^q)$, Math. Sci. Appl. E-Notes Vol: 7, No. 2 (2019), 161-173.
  • [2] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. Vol: 7 (1957), 113-141.
  • [3] F. G¨okc¸e, Compact and Matrix Operators on the Space $\left\vert\overline N_p^{\phi}\right\vert _ {k} $. FUJMA. Vol: 4 No. 2 (2021), 124-133.
  • [4] F. G¨okc¸e, M.A. Sarıg¨ol, Some matrix and compact operators of the absolute Fibonacci series spaces. Kragujevac J. Math. Vol: 44, No.2, (2020), 273–286.
  • [5] F. G¨okc¸e, M.A. Sarıg¨ol, Series spaces derived from absolute Fibonacci summability and matrix transformations. Boll. Unione Mat. Ital. Vol: 13, (2020), 29-38.
  • [6] F. G¨okc¸e, M.A. Sarıg¨ol, On absolute Euler spaces and related matrix operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. Vol: 90 No:5 (2020), 769-775.
  • [7] F. G¨okc¸e, M.A. Sarıg¨ol, Generalization of the absolute Ces`aro space and some matrix transformations, Num. Func. Anal. Opt. Vol: 40, (2019), 1039-1052.
  • [8] F. G¨okc¸e, M.A. Sarıg¨ol, Extension of Maddox’s space l(m) with N¨orlund means, Asian-Eur. J. Math. Vol: 12 No.6 (2019), 1-12.
  • [9] F. G¨okc¸e, M.A. Sarıg¨ol, A new series space$\left\vert \overline{N}_{p}^{\theta }\right\vert \left(\mu \right) $ and matrix transformations with applications, Kuwait J. Sci. Vol:45 No:4 (2018), 1-8.
  • [10] F. G¨okc¸e, M.A. Sarıg¨ol, Generalization of the space l(p) derived by absolute Euler summability and matrix operators. J. Ineq. Appl. Vol: 2018 (2018), 133
  • [11] K.G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Mathe.Anal, Appl., Vol: (1993), 223–238.
  • [12] G. C. Hazar, M. A. Sarıg¨ol, On Absolute N¨orlund Spaces and Matrix Operators, Acta Math. Sinica, English Series Vol: 34 (2018), 812-826.
  • [13] M. Ilkhan, Matrix Domain of a Regular Matrix Derived by Euler Totient Function in the Spaces c0 and c, Mediterr. J. Math.,Vol: 17, No.1 (2020), 1-21.
  • [14] I. J. Maddox, Some properties of paranormed sequence spaces, J. London Math. Soc. Vol: 1, (1969), 316-322.
  • [15] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Math. Proc. Cambridge Philos. Soc. Vol: 64, (1968), 335-340.
  • [16] I. J. Maddox, Spaces of strongly summable sequences, The Quart. J. Math. Vol: 18, (1967), 345-355.
  • [17] E. Malkowsky, V. Rakocevic, On matrix domains of triangles. Appl.Math. Comp. Vol:189, No. 2, (2007), 1146-1163.
  • [18] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad.(Beogr), Vol:9, No.17, (2000), 143-234.
  • [19] M.A. Sarıg¨ol, Spaces of series summable by absolute Ces`aro and matrix operators, Comm. Math. Appl. Vol:7 (2016), 11-22.
  • [20] A. Wilansky, Summability Through Functional Analysis, Math. Studies, 85. North Holland , Amsterdam, (1984).
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Fadime Gökçe 0000-0003-1819-3317

Publication Date April 30, 2023
Submission Date May 23, 2022
Acceptance Date April 7, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Gökçe, F. (2023). A Note On The Matrix Operators Of Absolute Nörlund Series Space. Konuralp Journal of Mathematics, 11(1), 8-14.
AMA Gökçe F. A Note On The Matrix Operators Of Absolute Nörlund Series Space. Konuralp J. Math. April 2023;11(1):8-14.
Chicago Gökçe, Fadime. “A Note On The Matrix Operators Of Absolute Nörlund Series Space”. Konuralp Journal of Mathematics 11, no. 1 (April 2023): 8-14.
EndNote Gökçe F (April 1, 2023) A Note On The Matrix Operators Of Absolute Nörlund Series Space. Konuralp Journal of Mathematics 11 1 8–14.
IEEE F. Gökçe, “A Note On The Matrix Operators Of Absolute Nörlund Series Space”, Konuralp J. Math., vol. 11, no. 1, pp. 8–14, 2023.
ISNAD Gökçe, Fadime. “A Note On The Matrix Operators Of Absolute Nörlund Series Space”. Konuralp Journal of Mathematics 11/1 (April 2023), 8-14.
JAMA Gökçe F. A Note On The Matrix Operators Of Absolute Nörlund Series Space. Konuralp J. Math. 2023;11:8–14.
MLA Gökçe, Fadime. “A Note On The Matrix Operators Of Absolute Nörlund Series Space”. Konuralp Journal of Mathematics, vol. 11, no. 1, 2023, pp. 8-14.
Vancouver Gökçe F. A Note On The Matrix Operators Of Absolute Nörlund Series Space. Konuralp J. Math. 2023;11(1):8-14.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.