Riemannian $\Pi-$Structure on $5-$Dimensional Nilpotent Lie Algebras
Year 2023,
Volume: 11 Issue: 2, 206 - 217, 31.10.2023
Şenay Bulut
,
Vildan Korucu Akan
Abstract
The object of our investigations is to classify 5-dimensional nilpotent Lie algebras with two different Riemannian $\Pi-$structures. It is shown that the Lie groups corresponding to the Lie algebras $\mathfrak{g} _{i}$ equipped with two different Riemannian $\Pi-$structures is not para-Sasaki-like. Moreover, we investigate whether the considered manifolds admit Ricci-like solitons and whether they are $\eta-$Einstein manifolds.
References
- [1] H. Manev, M. Manev, Para-Ricci-like solitons on Riemannian manifolds with almost paracontact structure and almost paracomplex structure.
Mathematics, 9(14) (2021), 1704.
- [2] H. Manev, Para-Ricci-like solitons with vertical potential on para-Sasaki-like Riemannian Õmanifolds, Symmetry, 13 (2021), 2267.
- [3] H. Manev, M. Manev, Para-Ricci-like solitons with arbitrary potential on para-Sasaki-like Riemannian manifolds, Mathematics, 10(4) (2022), 651.
- [4] M. Manev, M. Staikova, On almost paracontact Riemannian manifolds of type (n;n), J. Geom., 72 (2001), 108-114.
- [5] H.G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3(2) (2012), 18-24.
- [6] S. Ivanov, H. Manev and M. Manev, Para-Sasaki-like Riemannian manifolds and new Einstein metrics, Revista de la Real Academia de Ciencias Exactas,
F´ısicas y Naturales. Serie A. Matem´aticas, 115 (2021), 112.
- [7] H. D. Cao, Recent progress on Ricci solitons, Adv. Lect. Math. (ALM), 11 (2009), 1-38.
- [8] J. Dixmier, Sur les reprentations unitaires des groupes de Lie nilpotentes III, Canad. J. Math., 10 (1958), 321-348.
- [9] S. Kaneyuki, F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
- [10] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.
- [11] A. Ali, F. Mofarreh, D. S. Patra, Geometry of almost Ricci solitons on paracontact metric manifolds, Quaestiones Mathematicae, 45(8) (2022),
1167-1180.
Year 2023,
Volume: 11 Issue: 2, 206 - 217, 31.10.2023
Şenay Bulut
,
Vildan Korucu Akan
References
- [1] H. Manev, M. Manev, Para-Ricci-like solitons on Riemannian manifolds with almost paracontact structure and almost paracomplex structure.
Mathematics, 9(14) (2021), 1704.
- [2] H. Manev, Para-Ricci-like solitons with vertical potential on para-Sasaki-like Riemannian Õmanifolds, Symmetry, 13 (2021), 2267.
- [3] H. Manev, M. Manev, Para-Ricci-like solitons with arbitrary potential on para-Sasaki-like Riemannian manifolds, Mathematics, 10(4) (2022), 651.
- [4] M. Manev, M. Staikova, On almost paracontact Riemannian manifolds of type (n;n), J. Geom., 72 (2001), 108-114.
- [5] H.G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3(2) (2012), 18-24.
- [6] S. Ivanov, H. Manev and M. Manev, Para-Sasaki-like Riemannian manifolds and new Einstein metrics, Revista de la Real Academia de Ciencias Exactas,
F´ısicas y Naturales. Serie A. Matem´aticas, 115 (2021), 112.
- [7] H. D. Cao, Recent progress on Ricci solitons, Adv. Lect. Math. (ALM), 11 (2009), 1-38.
- [8] J. Dixmier, Sur les reprentations unitaires des groupes de Lie nilpotentes III, Canad. J. Math., 10 (1958), 321-348.
- [9] S. Kaneyuki, F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
- [10] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.
- [11] A. Ali, F. Mofarreh, D. S. Patra, Geometry of almost Ricci solitons on paracontact metric manifolds, Quaestiones Mathematicae, 45(8) (2022),
1167-1180.