Research Article
BibTex RIS Cite

Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators

Year 2024, Volume: 12 Issue: 1, 80 - 85, 30.04.2024

Abstract

In this study, some estimates are obtained by means of the number of differences between the operator norm of the analytic functions of the linear bounded Hilbert space operator and the numerical radius, and the difference numbers of the powers of the corresponding Hilbert space operators. Firstly, these evaluations are made for the polynomial functions of the linear bounded Hilbert space operator. Later, this topic is generalized for the analytical functions of the linear bounded Hilbert space operator. In the end, two general results are proved.

References

  • [1] T. M. W. Alomari, S. Sahoo and M. Bakherad, Further numerical radius inequalities, J. Math. Inequal., 16, 1 (2022), 307-326.
  • [2] W. Bani-Domi and F. Kittaneh, Refined and generalized numerical radius inequalities for 22 operator matrices, Linear Algebra Appl., 624 (2021), 364-386.
  • [3] Y. M. Berezansky, Z. G. Sheftel and G. H. Us, Functional Analysis, Birkhauser, 1th printing, Berlin, 1996.
  • [4] P. Bhunia and K. Paul, New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math., 167 (2021), 1-11.
  • [5] P. Bhunia, K. Paul and R. K. Nayak, Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices, Math. Inequal. Appl., 24 (2021), 167-183.
  • [6] M. Demuth, Mathematical aspect of physics with non-selfadjoint operators, List of open problem, American Institute of Mathematics Workshop Germany, (8-12 June 2015).
  • [7] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Space, Springer, 1th printing, Chem, 2013.
  • [8] K. E. Gustafson and D. K. M. Rao, Numerical Range: The Field Of Values Of Linear Operators And Matrices, Springer, 1th printing, New York, 1997.
  • [9] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1th printing, New York, 1967.
  • [10] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11-17.
  • [11] F. Kittaneh,Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73-80.
  • [12] M. H. M Rashid and N. H. Altaweel, Some generalized numerical radius inequalities for Hilbert space operators, J. Math. Inequal., 16, 2 (2022), 541-560.
  • [13] T. Yamazaki, On upper and lower bounds of the numerical radius and equality condition, Studia Math., 178 (2007), 83-89.
Year 2024, Volume: 12 Issue: 1, 80 - 85, 30.04.2024

Abstract

References

  • [1] T. M. W. Alomari, S. Sahoo and M. Bakherad, Further numerical radius inequalities, J. Math. Inequal., 16, 1 (2022), 307-326.
  • [2] W. Bani-Domi and F. Kittaneh, Refined and generalized numerical radius inequalities for 22 operator matrices, Linear Algebra Appl., 624 (2021), 364-386.
  • [3] Y. M. Berezansky, Z. G. Sheftel and G. H. Us, Functional Analysis, Birkhauser, 1th printing, Berlin, 1996.
  • [4] P. Bhunia and K. Paul, New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math., 167 (2021), 1-11.
  • [5] P. Bhunia, K. Paul and R. K. Nayak, Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices, Math. Inequal. Appl., 24 (2021), 167-183.
  • [6] M. Demuth, Mathematical aspect of physics with non-selfadjoint operators, List of open problem, American Institute of Mathematics Workshop Germany, (8-12 June 2015).
  • [7] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Space, Springer, 1th printing, Chem, 2013.
  • [8] K. E. Gustafson and D. K. M. Rao, Numerical Range: The Field Of Values Of Linear Operators And Matrices, Springer, 1th printing, New York, 1997.
  • [9] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1th printing, New York, 1967.
  • [10] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11-17.
  • [11] F. Kittaneh,Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73-80.
  • [12] M. H. M Rashid and N. H. Altaweel, Some generalized numerical radius inequalities for Hilbert space operators, J. Math. Inequal., 16, 2 (2022), 541-560.
  • [13] T. Yamazaki, On upper and lower bounds of the numerical radius and equality condition, Studia Math., 178 (2007), 83-89.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Pembe Ipek Al 0000-0002-6111-1121

Rukiye Öztürk Mert 0000-0001-8083-5304

Zameddin İsmailov 0000-0001-5193-5349

Early Pub Date April 29, 2024
Publication Date April 30, 2024
Submission Date September 21, 2022
Acceptance Date April 29, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Ipek Al, P., Öztürk Mert, R., & İsmailov, Z. (2024). Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators. Konuralp Journal of Mathematics, 12(1), 80-85.
AMA Ipek Al P, Öztürk Mert R, İsmailov Z. Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators. Konuralp J. Math. April 2024;12(1):80-85.
Chicago Ipek Al, Pembe, Rukiye Öztürk Mert, and Zameddin İsmailov. “Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators”. Konuralp Journal of Mathematics 12, no. 1 (April 2024): 80-85.
EndNote Ipek Al P, Öztürk Mert R, İsmailov Z (April 1, 2024) Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators. Konuralp Journal of Mathematics 12 1 80–85.
IEEE P. Ipek Al, R. Öztürk Mert, and Z. İsmailov, “Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators”, Konuralp J. Math., vol. 12, no. 1, pp. 80–85, 2024.
ISNAD Ipek Al, Pembe et al. “Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators”. Konuralp Journal of Mathematics 12/1 (April 2024), 80-85.
JAMA Ipek Al P, Öztürk Mert R, İsmailov Z. Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators. Konuralp J. Math. 2024;12:80–85.
MLA Ipek Al, Pembe et al. “Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators”. Konuralp Journal of Mathematics, vol. 12, no. 1, 2024, pp. 80-85.
Vancouver Ipek Al P, Öztürk Mert R, İsmailov Z. Operator Norm-Numerical Radius Gaps for Analytic Function of Hilbert Space Operators. Konuralp J. Math. 2024;12(1):80-5.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.