BibTex RIS Kaynak Göster

Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya sp. Biyokütle Optimizasyonu ve Kömür Emisyonlarından CO2 Fiksasyonu

Yıl 2016, Cilt: 19 Sayı: 4, 362 - 372, 05.11.2016

Öz

Çalışmada termik santral kömür emisyonlarına dirençli Leptolyngbya sp. siyanobakterisinin bu emisyonların çeşitli konsantrasyonlarında biyokütle üretiminde ve CO2 fiksasyon oranında artış sağlayabilmek için farklı parametrelerin optimizasyonu sağlanmıştır. Leptolyngbya sp.’nin artan kömür emisyonlarına direnç sağlaması için biyokütle 3-Indoleacetic acid (IAA) ve Viburnum opulus (VO) büyüme uyarıcıları ile uyarılmıştır. En yüksek biyokütle konsantrasyonu kontrol kültürden 1.3 kat daha fazla olarak 3.788 g L-1 ile BG11 + %5 Termik Santral Soğutma Suyu + 0.5 g L-1 IAA + 2.5 g L-1 VO besi yeri bileşiminde, pH 8’de, 35 ± 2 °C sıcaklıkta, 0.1 g L-1  başlangıç biyokütle konsantrasyonunda, 25 µmol m-2 s-1 (24:0, aydınlık:karanlık fotoperiyodu) ışık şiddetinde ve 14 günlük inkübasyon periyodunda elde edilmiştir. En yüksek maksimum biyokütle üretimi (Pmax) 0.263 g L-1 gün-1,  spesifik büyüme oranı 0.26 gün-1, CO2 fiksasyon miktarı 48.2 mg CO2 gün-1 olarak bulunmuştur. Çalışmada Leptolyngbya sp.’nin artan kömür emisyonlarında IAA ve VO büyüme faktörlerinin yardımıyla yüksek biyokütle üretebildiği ve kontrol kültüre göre çok daha fazla CO2’yi fiske edebildiği belirlenmiştir.

Anahtar kelimeler: 3-Indoleacetic acid, büyüme uyarıcıları, CO2 fiksasyonu, Leptolyngbya sp., Viburnum opulus

 

Biomass Optimisation of Thermal Power Plant Coal Emissions Resistant Leptolyngbya sp. and CO2 Fixation in Coal Emissions

 

ABSTRACT: In this study, different parameters were optimized in order to increase the CO2 fixation rate and biomass production of Leptolyngbya sp., which is a new flue gas resistant cyanobacteria. Leptolyngbya sp. was stimulated with 3-Indoleacetic acid (IAA) and Viburnum opulus (VO) growth stimulators to provide resistant against increasing flue gas concentrations. The maximum biomass was obtained 1.3 times higher than of control culture with 3.788 g L-1 in BG11 + 5% Thermal Power Plant Cooling Water + 0.5 g L-1 IAA + 2.5 g L-1 VO culture media, at pH 8, at 35 ± 2 °C, at 0.1 g L-1 initial biomass concentrations, with 25 µmol m-2 s-1 (24:0, light:dark photoperiod) in 14 days of incubation period. The maximum productivity (Pmax) was 0.263 g L-1 d-1, the maximum specific growth rate was 0.26 d-1 and the maximum CO2 fixation rate was 48.2 mgCO2 d-1. It was determined that compared to control culture, Leptolyngbya sp., could provide more biomass and capable of fixing more CO2 rates with the help of IAA and VO growth stimulators at increasing flue gas emissions.

Keywords: 3-Indoleacetic acid, growth stimulators, CO2 fixation, Leptolyngbya sp., Viburnum opulus

Kaynakça

  • Balusamy, B., Taştan, B.E., Ergen, S.F., Uyar, T., Tekinay, T. 2015. Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments. Environ Sci Process Imp, 17: 1265-1270.
  • Bartel, B., LeClere, S., Migidin, M., Zolman, B.K. 2001. Inputs to active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid b-oxidation. J Plant Growth Reg, 20:198–216.
  • Basu, S., Roy, A.S., Mohanty, K., Ghoshal, A.K. 2013. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol, 143:369-377.
  • Becker, E.W. 2008. Microalgae: biotechnology and microbiology. Cambridge studies in microbiology 10. Cambridge: Cambridge University Press.
  • Bhola, V., Swalaha, F., Kumar, R.R., Singh, M., Bux, F. 2014. Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol, 11: 2103-2118.
  • Burja, A. M., Tamagnini, P., Bustard, M.T., Wright, P.C. 2001. Identification of the green alga, Chlorella vulgaris (SDC1) using cyanobacteria derived 16S rDNA primers: targeting the chloroplast. FEMS Microb Letter, 202: 195-203.
  • Cheah, W.Y., Show, P.L., Chang, J.S., Ling, T.C., Juan, J.C. 2015. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technol, 184: 190-201.
  • Cheng, J., Yang, Z.B., Huang, Y., Huang, L., Hu, L.Z., Xu, D.H., Zhou, J.H., Cen, K.F. 2015. Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant. Bioresour Technol, 190: 235-241.
  • de-Bashan, L.E., Bashan, Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol, 101: 1611–1627.
  • de Morais, M.G., Costa, J.A.V. 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conver Manage, 48: 2169–2173.
  • Doušková, I., Kaštánek, F., Maléterová, Y., Kaštánek, P., Doucha, J., Zachleder, V. 2010. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence biogas-cogeneration-microalgae-products. Energy Conver Manage, 51: 606–611.
  • Fine, P., Hadas, E. 2012. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use. Sci Total Environ, 416: 289–299.
  • Gnanapragasam, N., Reddy, B., Rosen, M. 2009. Reducing CO2 emissions for an IGCC power generation system: effect of variations in gasifier and system operating conditions. Energy Conver Manage, 50: 1915–1923.
  • Hayat, S., Fariduddin, Q., Ali, B., Ahmad, A. 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron. Hung, 53: 433–437.
  • Ip, P.F., Chen, F. 2005. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem, 40: 733-738.
  • Jacob-Lopes, E., Scoparo, C.G.H., Queiroz, M.I., Franco, T.T. 2010. Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manage, 51: 894–900.
  • Jiang, Y., Zhang, W., Wang, J., Chen, Y., Shen, S., Liu, T. 2013. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol, 128: 359-364.
  • Karacakaya, P., Kılıç, N.K., Duygu, E., Dönmez, G. 2009. Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. J Hazard Mater, 172: 1635–1639.
  • Karaçelik, A.A., Küçük, M., İskefiyeli, Z., Aydemir, S., De Smet, S., Miserez, B., Sandra, P. 2015. Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chem, 175: 106-114.
  • Kenney, J.F., Keeping, E.S. 1951. Standard Error of the Mean in Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 110: 132-133.
  • Lee, J.S., Kim, D.K., Lee, J.P., Park, S.C., Koh, J.H., Cho, H.S., Kim, S.W. 2002. Effects of SO2 and NO on growth of Chlorella sp. KR-1. Biores Technol, 82: 1–4.
  • McGin, P.J., Dickinson, K.E., Bhatti, S., Frigon, J.C., Guiot, S.R., O'Leary, S.J.B. 2011. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res, 109: 231–247.
  • Mohsen, A., Gholamreza, Z., Iraj, R. 2013. Antimicrobial Potentials of Leptolyngbya sp. and Its Synergistic Effects With Antibiotics. Jundishapur J Microbiol, 6 (5): Article Number: UNSP e6536.
  • Patten, C.L., Glick, B.R. 2002. Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol, 8:3795–3801.
  • Pegallapati, A.K., Nirmalakhandan, N. 2013. Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: Performance evaluation. Renew Energ, 56: 129-135.
  • Peng, Y., Zhao, B., Li, L. 2012. Advance in post-combustion CO2 capture with alkaline solution: a brief review. Energy Procedia, 14: 1515–1522.
  • Porra, R.J., Thompson, W.A., Kreidemann, P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta, 975: 384-394.
  • Radmann, E.M., Camerini, F.V., Santos, T.D., Costa, J.A.V. 2011. Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Conver Manage, 52: 3132–3136.
  • Rajasekaran, L.R., Blake, T.J. 1999. New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. J Plant Growth Regul, 18: 175–181.
  • Rippka, R. 1988. Recognition and identification of cyanobacteria. Methods Enzymol, 167: 28–67.
  • Simoneit, B.R.T., Rogge, W.F., Lang, Q., Jaffe, R. 2001. Molecular characterization of smoke from campfire burning of pine wood (Pinus elliottii). Chemosphere, 2: 107–122.
  • Singh, J., Thakur, I.S. 2015. Evaluation of cyanobacterial endolith Leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: A toxicological perspective. Algal Res, 11: 294-303.
  • Sivacoumar, R., Bhanarkar, A.D., Goyal, S.K., Gadkari, S.K., Aggarwal, A.L. 2001. Air pollution modeling for an industrial complex and model performance evaluation. Environ Pol, 111: 471-477.
  • Taştan, B.E., Duygu, E., İlbaş, M., Dönmez, G. 2013. Utilization of LPG and gasoline engine exhaust emissions by microalgae, J Hazard Mater, 246-247: 173-180.
  • Türkiye Kömür İşletmeleri Kurumu Linyit Sektör Raporu. 2010. Ankara, Mart 2011 http://www.tki.gov.tr/Dosyalar/Dosya/K%C3%B6m%C3%BCrSektorRaporu2010.pdf (Erişim Tarihi: 15.03.2016)
  • Yadav, G., Karemore, A., Dash, S.K., Sen, R. 2015. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresource Technol, 191: 399-406.
  • Yılmaz, H., Yılmaz, M. 2013. Forecasting CO2 emissions for Turkey by using the grey prediction method, J Eng Nat Sci Sigma, 31, 141-148.
  • Youngken, H.W. 1930. The pharmacognosy, chemistry and pharmacology of viburnum*: I. Introduction, History, Botany and Pharmacognosy of Vibrnum Prunifolium L., Viburnum Rufidulum Raf., Viburnum Cassinoides L., and Viburnum Nudum L. J American Pharma Assoc, 19: 680-704.
  • Yue, L., Chen, W. 2005. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae, Energy Conver Manage, 46: 1868–1876.
Yıl 2016, Cilt: 19 Sayı: 4, 362 - 372, 05.11.2016

Öz

Kaynakça

  • Balusamy, B., Taştan, B.E., Ergen, S.F., Uyar, T., Tekinay, T. 2015. Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments. Environ Sci Process Imp, 17: 1265-1270.
  • Bartel, B., LeClere, S., Migidin, M., Zolman, B.K. 2001. Inputs to active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid b-oxidation. J Plant Growth Reg, 20:198–216.
  • Basu, S., Roy, A.S., Mohanty, K., Ghoshal, A.K. 2013. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol, 143:369-377.
  • Becker, E.W. 2008. Microalgae: biotechnology and microbiology. Cambridge studies in microbiology 10. Cambridge: Cambridge University Press.
  • Bhola, V., Swalaha, F., Kumar, R.R., Singh, M., Bux, F. 2014. Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol, 11: 2103-2118.
  • Burja, A. M., Tamagnini, P., Bustard, M.T., Wright, P.C. 2001. Identification of the green alga, Chlorella vulgaris (SDC1) using cyanobacteria derived 16S rDNA primers: targeting the chloroplast. FEMS Microb Letter, 202: 195-203.
  • Cheah, W.Y., Show, P.L., Chang, J.S., Ling, T.C., Juan, J.C. 2015. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technol, 184: 190-201.
  • Cheng, J., Yang, Z.B., Huang, Y., Huang, L., Hu, L.Z., Xu, D.H., Zhou, J.H., Cen, K.F. 2015. Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant. Bioresour Technol, 190: 235-241.
  • de-Bashan, L.E., Bashan, Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol, 101: 1611–1627.
  • de Morais, M.G., Costa, J.A.V. 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conver Manage, 48: 2169–2173.
  • Doušková, I., Kaštánek, F., Maléterová, Y., Kaštánek, P., Doucha, J., Zachleder, V. 2010. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence biogas-cogeneration-microalgae-products. Energy Conver Manage, 51: 606–611.
  • Fine, P., Hadas, E. 2012. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use. Sci Total Environ, 416: 289–299.
  • Gnanapragasam, N., Reddy, B., Rosen, M. 2009. Reducing CO2 emissions for an IGCC power generation system: effect of variations in gasifier and system operating conditions. Energy Conver Manage, 50: 1915–1923.
  • Hayat, S., Fariduddin, Q., Ali, B., Ahmad, A. 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron. Hung, 53: 433–437.
  • Ip, P.F., Chen, F. 2005. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem, 40: 733-738.
  • Jacob-Lopes, E., Scoparo, C.G.H., Queiroz, M.I., Franco, T.T. 2010. Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manage, 51: 894–900.
  • Jiang, Y., Zhang, W., Wang, J., Chen, Y., Shen, S., Liu, T. 2013. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol, 128: 359-364.
  • Karacakaya, P., Kılıç, N.K., Duygu, E., Dönmez, G. 2009. Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. J Hazard Mater, 172: 1635–1639.
  • Karaçelik, A.A., Küçük, M., İskefiyeli, Z., Aydemir, S., De Smet, S., Miserez, B., Sandra, P. 2015. Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chem, 175: 106-114.
  • Kenney, J.F., Keeping, E.S. 1951. Standard Error of the Mean in Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 110: 132-133.
  • Lee, J.S., Kim, D.K., Lee, J.P., Park, S.C., Koh, J.H., Cho, H.S., Kim, S.W. 2002. Effects of SO2 and NO on growth of Chlorella sp. KR-1. Biores Technol, 82: 1–4.
  • McGin, P.J., Dickinson, K.E., Bhatti, S., Frigon, J.C., Guiot, S.R., O'Leary, S.J.B. 2011. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res, 109: 231–247.
  • Mohsen, A., Gholamreza, Z., Iraj, R. 2013. Antimicrobial Potentials of Leptolyngbya sp. and Its Synergistic Effects With Antibiotics. Jundishapur J Microbiol, 6 (5): Article Number: UNSP e6536.
  • Patten, C.L., Glick, B.R. 2002. Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol, 8:3795–3801.
  • Pegallapati, A.K., Nirmalakhandan, N. 2013. Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: Performance evaluation. Renew Energ, 56: 129-135.
  • Peng, Y., Zhao, B., Li, L. 2012. Advance in post-combustion CO2 capture with alkaline solution: a brief review. Energy Procedia, 14: 1515–1522.
  • Porra, R.J., Thompson, W.A., Kreidemann, P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta, 975: 384-394.
  • Radmann, E.M., Camerini, F.V., Santos, T.D., Costa, J.A.V. 2011. Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Conver Manage, 52: 3132–3136.
  • Rajasekaran, L.R., Blake, T.J. 1999. New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. J Plant Growth Regul, 18: 175–181.
  • Rippka, R. 1988. Recognition and identification of cyanobacteria. Methods Enzymol, 167: 28–67.
  • Simoneit, B.R.T., Rogge, W.F., Lang, Q., Jaffe, R. 2001. Molecular characterization of smoke from campfire burning of pine wood (Pinus elliottii). Chemosphere, 2: 107–122.
  • Singh, J., Thakur, I.S. 2015. Evaluation of cyanobacterial endolith Leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: A toxicological perspective. Algal Res, 11: 294-303.
  • Sivacoumar, R., Bhanarkar, A.D., Goyal, S.K., Gadkari, S.K., Aggarwal, A.L. 2001. Air pollution modeling for an industrial complex and model performance evaluation. Environ Pol, 111: 471-477.
  • Taştan, B.E., Duygu, E., İlbaş, M., Dönmez, G. 2013. Utilization of LPG and gasoline engine exhaust emissions by microalgae, J Hazard Mater, 246-247: 173-180.
  • Türkiye Kömür İşletmeleri Kurumu Linyit Sektör Raporu. 2010. Ankara, Mart 2011 http://www.tki.gov.tr/Dosyalar/Dosya/K%C3%B6m%C3%BCrSektorRaporu2010.pdf (Erişim Tarihi: 15.03.2016)
  • Yadav, G., Karemore, A., Dash, S.K., Sen, R. 2015. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresource Technol, 191: 399-406.
  • Yılmaz, H., Yılmaz, M. 2013. Forecasting CO2 emissions for Turkey by using the grey prediction method, J Eng Nat Sci Sigma, 31, 141-148.
  • Youngken, H.W. 1930. The pharmacognosy, chemistry and pharmacology of viburnum*: I. Introduction, History, Botany and Pharmacognosy of Vibrnum Prunifolium L., Viburnum Rufidulum Raf., Viburnum Cassinoides L., and Viburnum Nudum L. J American Pharma Assoc, 19: 680-704.
  • Yue, L., Chen, W. 2005. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae, Energy Conver Manage, 46: 1868–1876.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Burcu Ertit Taştan

Yayımlanma Tarihi 5 Kasım 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 19 Sayı: 4

Kaynak Göster

APA Ertit Taştan, B. (2016). Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya sp. Biyokütle Optimizasyonu ve Kömür Emisyonlarından CO2 Fiksasyonu. KSÜ Doğa Bilimleri Dergisi, 19(4), 362-372.
AMA Ertit Taştan B. Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya sp. Biyokütle Optimizasyonu ve Kömür Emisyonlarından CO2 Fiksasyonu. KSÜ Doğa Bilimleri Dergisi. Kasım 2016;19(4):362-372.
Chicago Ertit Taştan, Burcu. “Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya Sp. Biyokütle Optimizasyonu Ve Kömür Emisyonlarından CO2 Fiksasyonu”. KSÜ Doğa Bilimleri Dergisi 19, sy. 4 (Kasım 2016): 362-72.
EndNote Ertit Taştan B (01 Kasım 2016) Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya sp. Biyokütle Optimizasyonu ve Kömür Emisyonlarından CO2 Fiksasyonu. KSÜ Doğa Bilimleri Dergisi 19 4 362–372.
IEEE B. Ertit Taştan, “Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya sp. Biyokütle Optimizasyonu ve Kömür Emisyonlarından CO2 Fiksasyonu”, KSÜ Doğa Bilimleri Dergisi, c. 19, sy. 4, ss. 362–372, 2016.
ISNAD Ertit Taştan, Burcu. “Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya Sp. Biyokütle Optimizasyonu Ve Kömür Emisyonlarından CO2 Fiksasyonu”. KSÜ Doğa Bilimleri Dergisi 19/4 (Kasım 2016), 362-372.
JAMA Ertit Taştan B. Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya sp. Biyokütle Optimizasyonu ve Kömür Emisyonlarından CO2 Fiksasyonu. KSÜ Doğa Bilimleri Dergisi. 2016;19:362–372.
MLA Ertit Taştan, Burcu. “Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya Sp. Biyokütle Optimizasyonu Ve Kömür Emisyonlarından CO2 Fiksasyonu”. KSÜ Doğa Bilimleri Dergisi, c. 19, sy. 4, 2016, ss. 362-7.
Vancouver Ertit Taştan B. Termik Santral Kömür Emisyonlarına Dirençli Leptolyngbya sp. Biyokütle Optimizasyonu ve Kömür Emisyonlarından CO2 Fiksasyonu. KSÜ Doğa Bilimleri Dergisi. 2016;19(4):362-7.