Research Article
BibTex RIS Cite

Çevrimiçi Öğrenmeye Yönelik Öz-yeterlik Ölçeğinin Türkçe’ye Uyarlanması

Year 2021, Volume: 18 Issue: 3, 1640 - 1657, 31.12.2021
https://doi.org/10.33437/ksusbd.983825

Abstract

Bu çalışmanın amacı, “Çevrimiçi Öğrenmeye Yönelik Öz-yeterlik Ölçeğinin (Online Learning Self-efficacy Scale)” Türkçe’ye uyarlanması ve bu kapsamda ölçek sonuçlarının geçerlik ve güvenirlik analizlerinin sunulmasıdır. Özgün formu İngilizce olan ölçek, 4 boyut (teknoloji kullanımı öz-yeterliği, çevrimiçi öğrenme öz-yeterliği, öğretici ve akran etkileşimi ve iletişimi öz-yeterliği, öz-denetim ve motivasyon etkinliği) ve 31 maddeden oluşmaktadır. Ölçeğin uyarlama sürecinde ilk olarak İngilizce form iyi düzeyde İngilizce ve çevrimiçi öğrenme terminolojisine hâkim iki öğretim üyesi tarafından Türkçe’ye çevrilmiştir. Ardından tekrar İngilizce’ye çevrilen ölçeğin İngilizce ve Türkçe çevirileri arasındaki tutarlılığa bakılmıştır. Ölçeğin orijinalinde boyutların tespiti ve doğrulanması için Akdeniz Üniversitesi’nde 2020-2021 eğitim-öğretim yılında öğrenim görmekte olan 299 öğrenciden elde edilen veriler doğrultusunda açımlayıcı faktör analizi ile doğrulayıcı faktör analizi kullanılmıştır. Bu analizlerden elde edilen sonuçlara göre Türkçe ölçeğin özgün ölçekle tamamen aynı maddelerden oluşan dört faktörlü yapıda olduğu görülmüştür. Yapılan geçerlik ve güvenirlik analizi neticesinde de “Çevrimiçi Öğrenme Öz-Yeterlik Ölçeğinin” çevrimiçi platformlarda öğrenme öz-yeterliklerinin tespiti için geçerli ve güvenilir bir araç olduğunu söylemek mümkündür.

References

  • Alivernini, F., & Lucidi, F. (2011). Relationship between social context, self-efficacy, motivation, academic achievement, and intention to drop out of high school: A longitudinal study. The Journal of Educational Research, 104(4), 241-252. https://doi.org/10.1080/00220671003728062
  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behaviour change. Psychological Review, 84, 191-215. http://dx.doi.org/10.1037/0033-295X.84.2.191
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman.
  • Bandura, A. (1991). Social Cognitive Theory of Self-Regulation. Organizational Behaviour and Human Decision Processes, 50, 248–287.
  • Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13, 139-161. https://doi.org/10.1016/0167-8116(95)00038-0
  • Bawa, P. (2016). Retention in online courses. SAGE Open, 6(1), 1–11.
  • Bland, J. M. & Altman, D. G. (1997). Statistics notes: Cronbach's alpha. Bmj, 314 (7080), 572.
  • Büyüköztürk, Ş. (2002). Faktör Analizi: Temel Kavramlar ve Ölçek Geliştirmede Kullanımı Kuram ve Uygulamada Eğitim Yönetimi, 32, 470-483.
  • Büyüköztürk, Ş. (2010). Sosyal bilimler için veri analizi el kitabı (11.Baskı). Ankara: Pegem Akademi.
  • Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS and SIMPLIS: Basic concepts, applications, and programmings. London: Lawrence Erlbaum Assocatiates, Publishers.
  • Byrne, B. M. (2010). Structural equation modeling with AMOS Basic concepts, applications, and programming (Multivariate Applications Series). Routledge, New York.
  • Cho, M.-H., & Shen, D. (2013). Self-regulation in online learning. Distance Education, 34(3), 290–301.
  • Elias, S. M., & MacDonald, S. (2007). Using Past Performance, Proxy Efficacy, and Academic Self-Efficacy to Predict College Performance. Journal of Applied Social Psychology, 37(11), 2518–2531.
  • Hodges, C. B. (2008). Self-efficacy in the context of online learning environments: A review of the literature and directions for research. Performance Improvement Quarterly, 20 (3–4), 7–25. https://doi.org/10.1002/piq.20001
  • Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review, 17, 63–84.
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modeling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60.
  • Horzum, M. B., & Çakır, O. (2009). Çevrim içi teknolojilere yönelik öz-yeterlik algısı ölçeği Türkçe formunun geçerlik ve güvenirlik çalışması [Validity and reliability study of the turkish version of the online technologies self-eficacy scale]. Educational Sciences: Theory & Practice, 9(3), 1327-1356.
  • Hu, L., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
  • Hu, L. T., & Bentler, P. M. (1999). Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychological Methods 1998, 3 (4), 424-453.
  • Joo, Y. J., Bong, M., & Choi, H. J. (2000). Self-efficacy for self-regulated learning, academic self-efficacy, and Internet self-efficacy in Web-based instruction. Educational Technology Research and Development, 48(2), 5-17.
  • Kang, M., Kim, J., & Kang, J. (2008). Relationships among Self-efficacy, Metacognition, Cognitive presence, Flow, and Learning Outcomes in webbased PBL. Society for Information Technology & Teacher Education International Conference, (3), 471–476.
  • Kruger-Ross, M. J., & Waters, R. D. (2013). Predicting online learning success: Applying the situational theory of publics to the virtual classroom. Computers & Education, 61, 176- 184.
  • Lim, D. H., & Kim, H. (2003). Motivation and learner characteristics affecting online learning and learning application. Journal of Educational Technology Systems, 31(4), 423–439.
  • Lin, J. W., Szu, Y. C., & Lai, C. N. (2016). Effects of group awareness and self-regulation level on online learning behaviors. The International Review of Research in Open and Distributed Learning, 17(4), 224-24.
  • Lynch, R., & Demo, M. (2004). The relationship between self-regulation and online learning in a blended learning context. The International Review of Research in Open and Distributed Learning, 5(2), 1-16.
  • Mercado, C. A. (2008). Readiness assessment tool for an e-learning environment implementation. Special Issue of the International Journal of the Computer, The Internet and Management, 16(3).18.1-18.11.
  • Miltiadou, M., & Savenye, W. C. (2003). Applying social cognitive constructs of motivation to enhance student success in online distance education. Educational Technology Review, 11(1), 1-17.
  • Moftakhari, M. M. (2013). Evaluating e-learning readiness of faculty of letters of Hacettepe (Unpublished master’s thesis). Hacettepe University, Ankara.
  • Onal, N., & Ibili, E. (2017). E-öğrenme ortamları [E-learning environment]. In S. Sahin & C. Uluyol (Eds.), Eğitimde Bilişim Teknolojileri [Information Technology in Education] (520-538). Ankara: Pegem Akademi.
  • Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of educational research, 66(4), 543-578. Prensky, M. (2001). Digital natives, digital immigrants. On the Horizon, 9(5), 1-6.
  • Salkind, N. J., & Rasmussen, K. (2008). Encyclopedia of educational psychology. Thousand Oaks, Calif: Sage Publications.
  • Shroff, R. H., Vogel, D. R., & Coombes, J. (2008). Assessing individual-level factors supporting student intrinsic motivation in online discussions: A qualitative study. Journal of Information Systems Education, 19(1), 111–125.
  • Styer, A. J. (2007). A grounded meta-analysis of adult learner motivation in online learning from the perspective of the learner (Doctoral thesis). ProQuest Dissertations and Theses database (UMI No. 3249903).
  • Sun, Y. & Rogers, R. (2020). Development and validation of the Online Learning Self-efficacy Scale (OLSS): A structural equation modeling approach, American Journal of Distance Education, DOI: 10.1080/08923647.2020.1831357
  • Sümer, N. (2000). Yapısal eşitlik modelleri: Temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3(6), 49-74.
  • Tabachnick, B.G. & Fidell, L. S. (2013). Using Multivariate Statistics (6th ed). USA:Pearson.
  • Taipjutorus, W., Hansen, S., & Brown, M. (2012). Improving Learners’ Self-efficacy in a learner-controlled online learning environment: a correlational study. M. Brown, M. Harnett & T. Stewart (Ed.) Future Challenges, sustainable futures. Proceedings ASCILITE Wellington. 907-911.
  • Wang, C.H., Shannon, D. M., & Ross, M. E. (2013). Students’ characteristics, self-regulated learning, technology self-efficacy, and course outcomes in online learning. Distance Education, 34(3), 302–323.
  • Wighting, M. J., Liu, J., & Rovai, A. P. (2008). Distinguishing sense of community and motivation characteristics between online and traditional college students. Quarterly Review of Distance Education, 9(3), 285–295.
  • Yükselturk, E., & Bulut, S. (2007). Predictors for student success in an online course. Educational Technology & Society, 10(2), 71–83.
  • Zimmerman, B. J. (1989). A Social Cognitive View of Self-Regulated Academic Learning. Journal of Educational Psychology, 81(3).
  • Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory into Practice, 41(2).
Year 2021, Volume: 18 Issue: 3, 1640 - 1657, 31.12.2021
https://doi.org/10.33437/ksusbd.983825

Abstract

References

  • Alivernini, F., & Lucidi, F. (2011). Relationship between social context, self-efficacy, motivation, academic achievement, and intention to drop out of high school: A longitudinal study. The Journal of Educational Research, 104(4), 241-252. https://doi.org/10.1080/00220671003728062
  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behaviour change. Psychological Review, 84, 191-215. http://dx.doi.org/10.1037/0033-295X.84.2.191
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman.
  • Bandura, A. (1991). Social Cognitive Theory of Self-Regulation. Organizational Behaviour and Human Decision Processes, 50, 248–287.
  • Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13, 139-161. https://doi.org/10.1016/0167-8116(95)00038-0
  • Bawa, P. (2016). Retention in online courses. SAGE Open, 6(1), 1–11.
  • Bland, J. M. & Altman, D. G. (1997). Statistics notes: Cronbach's alpha. Bmj, 314 (7080), 572.
  • Büyüköztürk, Ş. (2002). Faktör Analizi: Temel Kavramlar ve Ölçek Geliştirmede Kullanımı Kuram ve Uygulamada Eğitim Yönetimi, 32, 470-483.
  • Büyüköztürk, Ş. (2010). Sosyal bilimler için veri analizi el kitabı (11.Baskı). Ankara: Pegem Akademi.
  • Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS and SIMPLIS: Basic concepts, applications, and programmings. London: Lawrence Erlbaum Assocatiates, Publishers.
  • Byrne, B. M. (2010). Structural equation modeling with AMOS Basic concepts, applications, and programming (Multivariate Applications Series). Routledge, New York.
  • Cho, M.-H., & Shen, D. (2013). Self-regulation in online learning. Distance Education, 34(3), 290–301.
  • Elias, S. M., & MacDonald, S. (2007). Using Past Performance, Proxy Efficacy, and Academic Self-Efficacy to Predict College Performance. Journal of Applied Social Psychology, 37(11), 2518–2531.
  • Hodges, C. B. (2008). Self-efficacy in the context of online learning environments: A review of the literature and directions for research. Performance Improvement Quarterly, 20 (3–4), 7–25. https://doi.org/10.1002/piq.20001
  • Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review, 17, 63–84.
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modeling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60.
  • Horzum, M. B., & Çakır, O. (2009). Çevrim içi teknolojilere yönelik öz-yeterlik algısı ölçeği Türkçe formunun geçerlik ve güvenirlik çalışması [Validity and reliability study of the turkish version of the online technologies self-eficacy scale]. Educational Sciences: Theory & Practice, 9(3), 1327-1356.
  • Hu, L., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
  • Hu, L. T., & Bentler, P. M. (1999). Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychological Methods 1998, 3 (4), 424-453.
  • Joo, Y. J., Bong, M., & Choi, H. J. (2000). Self-efficacy for self-regulated learning, academic self-efficacy, and Internet self-efficacy in Web-based instruction. Educational Technology Research and Development, 48(2), 5-17.
  • Kang, M., Kim, J., & Kang, J. (2008). Relationships among Self-efficacy, Metacognition, Cognitive presence, Flow, and Learning Outcomes in webbased PBL. Society for Information Technology & Teacher Education International Conference, (3), 471–476.
  • Kruger-Ross, M. J., & Waters, R. D. (2013). Predicting online learning success: Applying the situational theory of publics to the virtual classroom. Computers & Education, 61, 176- 184.
  • Lim, D. H., & Kim, H. (2003). Motivation and learner characteristics affecting online learning and learning application. Journal of Educational Technology Systems, 31(4), 423–439.
  • Lin, J. W., Szu, Y. C., & Lai, C. N. (2016). Effects of group awareness and self-regulation level on online learning behaviors. The International Review of Research in Open and Distributed Learning, 17(4), 224-24.
  • Lynch, R., & Demo, M. (2004). The relationship between self-regulation and online learning in a blended learning context. The International Review of Research in Open and Distributed Learning, 5(2), 1-16.
  • Mercado, C. A. (2008). Readiness assessment tool for an e-learning environment implementation. Special Issue of the International Journal of the Computer, The Internet and Management, 16(3).18.1-18.11.
  • Miltiadou, M., & Savenye, W. C. (2003). Applying social cognitive constructs of motivation to enhance student success in online distance education. Educational Technology Review, 11(1), 1-17.
  • Moftakhari, M. M. (2013). Evaluating e-learning readiness of faculty of letters of Hacettepe (Unpublished master’s thesis). Hacettepe University, Ankara.
  • Onal, N., & Ibili, E. (2017). E-öğrenme ortamları [E-learning environment]. In S. Sahin & C. Uluyol (Eds.), Eğitimde Bilişim Teknolojileri [Information Technology in Education] (520-538). Ankara: Pegem Akademi.
  • Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of educational research, 66(4), 543-578. Prensky, M. (2001). Digital natives, digital immigrants. On the Horizon, 9(5), 1-6.
  • Salkind, N. J., & Rasmussen, K. (2008). Encyclopedia of educational psychology. Thousand Oaks, Calif: Sage Publications.
  • Shroff, R. H., Vogel, D. R., & Coombes, J. (2008). Assessing individual-level factors supporting student intrinsic motivation in online discussions: A qualitative study. Journal of Information Systems Education, 19(1), 111–125.
  • Styer, A. J. (2007). A grounded meta-analysis of adult learner motivation in online learning from the perspective of the learner (Doctoral thesis). ProQuest Dissertations and Theses database (UMI No. 3249903).
  • Sun, Y. & Rogers, R. (2020). Development and validation of the Online Learning Self-efficacy Scale (OLSS): A structural equation modeling approach, American Journal of Distance Education, DOI: 10.1080/08923647.2020.1831357
  • Sümer, N. (2000). Yapısal eşitlik modelleri: Temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3(6), 49-74.
  • Tabachnick, B.G. & Fidell, L. S. (2013). Using Multivariate Statistics (6th ed). USA:Pearson.
  • Taipjutorus, W., Hansen, S., & Brown, M. (2012). Improving Learners’ Self-efficacy in a learner-controlled online learning environment: a correlational study. M. Brown, M. Harnett & T. Stewart (Ed.) Future Challenges, sustainable futures. Proceedings ASCILITE Wellington. 907-911.
  • Wang, C.H., Shannon, D. M., & Ross, M. E. (2013). Students’ characteristics, self-regulated learning, technology self-efficacy, and course outcomes in online learning. Distance Education, 34(3), 302–323.
  • Wighting, M. J., Liu, J., & Rovai, A. P. (2008). Distinguishing sense of community and motivation characteristics between online and traditional college students. Quarterly Review of Distance Education, 9(3), 285–295.
  • Yükselturk, E., & Bulut, S. (2007). Predictors for student success in an online course. Educational Technology & Society, 10(2), 71–83.
  • Zimmerman, B. J. (1989). A Social Cognitive View of Self-Regulated Academic Learning. Journal of Educational Psychology, 81(3).
  • Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory into Practice, 41(2).
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Other Fields of Education
Journal Section Araştırma Makaleleri
Authors

Tayfun Yörük 0000-0002-4900-5705

Serdar Özçetin 0000-0003-0797-5268

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 18 Issue: 3

Cite

APA Yörük, T., & Özçetin, S. (2021). Çevrimiçi Öğrenmeye Yönelik Öz-yeterlik Ölçeğinin Türkçe’ye Uyarlanması. Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, 18(3), 1640-1657. https://doi.org/10.33437/ksusbd.983825

KSÜ Sosyal Bilimler Dergisi ULAKBİM-TR Dizin tarafından dizinlenen hakemli ve bilimsel bir dergidir.