Research Article
BibTex RIS Cite

The Investigation of the Effects of Agmatine in Pentylenetetrazole-induced Epilepsy Model in Mice and the Contribution of Nitric Oxide

Year 2022, Volume: 17 Issue: 1, 46 - 52, 21.03.2022
https://doi.org/10.17517/ksutfd.831948

Abstract

Objective: Agmatine is an endogenous cationic amin and have been reported several neurotherapeutic effects through α2-adrenoceptors, imidazoline binding sites, inhibition of NMDA receptors and nitric oxide (NO) synthase. NO was reported to act as a neuromodulator and neurotransmitter in central nervous system and has proconvulsant/anticonvulsant activities in convulsion models. We aimed to compare the anticonvulsant activities of agmatine, sodium valproate, gabapentin and phenytoin, and to investigate the role of NO in effects of drugs.
Material and Methods: Epilepsy seizures were induced in swiss-albino mice by single dose injection of penthylenetetrazole (PTZ) (60 mg/kg). Myoclonic-jerk (MJ) and generalized tonic-clonic seizures (GTCS) of mice were recorded. Agmatine (10 mg/kg), sodium valproate (150 mg/kg), gabapentin (20 mg/kg) and phenytoin (20 mg/kg) alone or in combinations with N(G)-Nitro-L-arginine-methyl-ester (L-NAME, 5 mg/kg), the precursor of NO, L-arginine (L-Arg, 60 mg/kg) and non-specific NO synthase inhibitor, were injected intraperitoneally.
Results: While agmatine and sodium valproate significantly prevented GTCS%, phenytoin and gabapentin did not prevent. L-Arg significantly reduced activity of agmatine on MJ%. Both L-Arg and L-NAME did not affect activity of phenytoin on MJ% and GTCS%. L-Arg did not change the activity of gabapentin on MJ% and GTCS%. L-NAME significantly increased activity of gabapentin on MJ% and GTCS%.
Conclusion: This study suggested that NO may have a role on anticonvulsant activity of agmatine and gabapentin but not those of sodium valproate and phenytoin.

References

  • 1. Su RB, Wei XL, Zheng JQ, Liu Y, Lu XQ, Li J. Anticonvulsive effect of agmatine in mice. Pharmacol Biochem Behav. 2004;77(2):345-9.
  • 2. Reeta KH, Mehla J, Pahuja M, Gupta YK. Pharmacokinetic and pharmacodynamic interactions of valproate, phenytoin, phenobarbitone and carbamazepine with curcumin in experimental models of epilepsy in rats. Pharmacol Biochem Behav. 2011;99(3):399-407.
  • 3. Luszczki JJ, Wu JZ, Raszewski G, Czuczwar SJ. Isobolographic characterization of interactions of retigabine with carbamazepine, lamotrigine, and valproate in the mouse maximal electroshock-induced seizure model. Naunyn-Schmiedeberg's archives of pharmacology. 2009;379(2):163-79.
  • 4. RA S. Sodium valproate, phenytoin and carbamazepine as sole anticonvulsants. The place of sodium valproate in the treatment of epilepsy. London: Academic Press Inc (London) Ltd and the Royal Society of Medicine; 1980. p. 7-16.
  • 5. Gruber CM BJ, Dyken MD. Comparison of the effectiveness of phenobarbital, mephobarbital, primidone, dipheylhydantoin, ethotoin, metharbital, and methylphenylhydantion in motor seizures. Clinical Pharmacology & Therapeutics 1962;3:23-8.
  • 6. Löscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov. 2013;12(10):757-76.
  • 7. French JA, Kanner AM, Bautista J, Abou-Khalil B, Browne T, Harden CL, et al. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2004;62(8):1261-73.
  • 8. French JA. Refractory epilepsy: clinical overview. Epilepsia. 2007;48 Suppl 1:3-7.
  • 9. Nevitt SJ, Sudell M, Weston J, Tudur Smith C, Marson AG. Antiepileptic drug monotherapy for epilepsy: a network meta-analysis of individual participant data. The Cochrane database of systematic reviews. 2017;12:Cd011412.
  • 10. Bence AK, Worthen DR, Stables JP, Crooks PA. An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine. Pharmacology, biochemistry, and behavior. 2003;74(3):771-5.
  • 11. Onal A, Delen Y, Ulker S, Soykan N. Agmatine attenuates neuropathic pain in rats: possible mediation of nitric oxide and noradrenergic activity in the brainstem and cerebellum. Life sciences. 2003;73(4):413-28.
  • 12. Luszczki JJ, Czernecki R, Wojtal K, Borowicz KK, Czuczwar SJ. Agmatine enhances the anticonvulsant action of phenobarbital and valproate in the mouse maximal electroshock seizure model. Journal of neural transmission (Vienna, Austria : 1996). 2008;115(11):1485-94.
  • 13. De Sarro GB, Donato Di Paola E, De Sarro A, Vidal MJ. Role of nitric oxide in the genesis of excitatory amino acid-induced seizures from the deep prepiriform cortex. Fundamental & clinical pharmacology. 1991;5(6):503-11.
  • 14. Osonoe K, Mori N, Suzuki K, Osonoe M. Antiepileptic effects of inhibitors of nitric oxide synthase examined in pentylenetetrazol-induced seizures in rats. Brain research. 1994;663(2):338-40.
  • 15. Bahremand A, Ziai P, Khodadad TK, Payandemehr B, Rahimian R, Ghasemi A, et al. Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: Involvement of L-arginine/nitric oxide pathway. Epilepsy Behav. 2010;18(3):186-92.
  • 16. Demehri S, Homayoun H, Honar H, Riazi K, Vafaie K, Roushanzamir F, et al. Agmatine exerts anticonvulsant effect in mice: modulation by alpha 2-adrenoceptors and nitric oxide. Neuropharmacology. 2003;45(4):534-42.
  • 17. Payandemehr B, Rahimian R, Bahremand A, Ebrahimi A, Saadat S, Moghaddas P, et al. Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine. Physiol Behav. 2013;118:52-7.
  • 18. Kumar A, Lalitha S, Mishra J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J Pharmacol. 2014;46(3):309-15.
  • 19. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Current protocols in neuroscience. 2012;Chapter 9:Unit9.37.
  • 20. Habib MM, Abdelfattah MA, Abadi AH. Design and Synthesis of Novel Phenylpiperazine Derivatives as Potential Anticonvulsant Agents. Arch Pharm (Weinheim). 2015;348(12):868-74.
  • 21. Swinyard EA, Kupferberg HJ. Antiepileptic drugs: detection, quantification, and evaluation. Federation proceedings. 1985;44(10):2629-33.
  • 22. Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. The Journal of pharmacology and experimental therapeutics. 2001;298(3):986-95.
  • 23. Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, et al. Role of oxidative stress in epileptic seizures. Neurochemistry international. 2011;59(2):122-37.
  • 24. Nevins ME, Arnolde SM. A comparison of the anticonvulsant effects of competitive and non-competitive antagonists of the N-methyl-D-aspartate receptor. Brain research. 1989;503(1):1-4.
  • 25. Getting SJ, Segieth J, Ahmad S, Biggs CS, Whitton PS. Biphasic modulation of GABA release by nitric oxide in the hippocampus of freely moving rats in vivo. Brain research. 1996;717(1-2):196-9.
  • 26. Talarek S, Fidecka S. Role of nitric oxide in anticonvulsant effects of benzodiazepines in mice. Polish journal of pharmacology. 2003;55(2):181-91.
  • 27. Allison C, Pratt JA. Differential effects of two chronic diazepam treatment regimes on withdrawal anxiety and AMPA receptor characteristics. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2006;31(3):602-19.
  • 28. McCaslin PP, Morgan WW. Continuously infused 2-amino-7-phosphonoheptanoic acid antagonizes N-methyl-D-aspartate-induced elevations of cyclic GMP in vivo in multiple brain areas and chemically-induced seizure activity. Neuropharmacology. 1986;25(8):905-9.
  • 29. Talarek S, Listos J, Orzelska-Gorka J, Serefko A, Kotlinska J. NMDA Receptors and NO:cGMP Signaling Pathway Mediate the Diazepam-Induced Sensitization to Withdrawal Signs in Mice. Neurotoxicity research. 2018;33(2):422-32.
  • 30. Sills GJ, Butler E, Thompson GG, Brodie MJ. Pharmacodynamic interaction studies with topiramate in the pentylenetetrazol and maximal electroshock seizure models. Seizure. 2004;13(5):287-95.
  • 31. Kaputlu I, Uzbay T. L-NAME inhibits pentylenetetrazole and strychnine-induced seizures in mice. Brain research. 1997;753(1):98-101.
  • 32. Banach M, Piskorska B, Czuczwar SJ, Borowicz KK. Nitric oxide, epileptic seizures, and action of antiepileptic drugs. CNS & neurological disorders drug targets. 2011;10(7):808-19.
  • 33. Halaris A, Plietz J. Agmatine : metabolic pathway and spectrum of activity in brain. CNS drugs. 2007;21(11):885-900.
  • 34. Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain research. 2006;1084(1):210-6.
  • 35. Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, Gasull T, Assumpcio Boronat M, Trullas R, et al. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. British journal of pharmacology. 1999;127(6):1317-26.
  • 36. Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neuroscience letters. 2005;390(3):129-33.

Farelerde Pentilenetetrazol ile İndüklenen Epilepsi Modelinde Agmatinin Etkilerinin ve Nitrik Oksitin Katkısının Araştırılması

Year 2022, Volume: 17 Issue: 1, 46 - 52, 21.03.2022
https://doi.org/10.17517/ksutfd.831948

Abstract

Amaç: Agmatin, endojen katyonik bir amindir ve α2-adrenoseptörler, imidazolin bağlanma yerleri, NMDA reseptörleri ve nitrik oksit (NO) sentaz inhibisyonu aracılığıyla çeşitli nöroterapötik etkileri bildirilmiştir. NO' nun ise merkezi sinir sisteminde nöromodülatör ve nörotransmiter olarak görev yaptığı ve konvülziyon modellerinde prokonvülsan/ antikonvülsan aktiviteye sahip olduğu bildirilmiştir. Biz de agmatin, sodyum valproat, gabapentin ve fenitoinin antikonvülsan aktivitelerini karşılaştırmayı ve ilaçların etkilerinde NO' nun rolünü araştırmayı amaçladık.
Gereç ve yöntemler: Epilepsi nöbetleri, Swiss-albino farelerde tek doz pentilentetrazol (PTZ) (60 mg/kg) enjeksiyonu ile indüklendi. Farelerin miyoklonik kasılma (MJ) ve jeneralize tonik-klonik nöbetleri (GTCS) kaydedildi. Agmatin (10 mg/kg), sodyum valproat (150 mg/kg), gabapentin (20 mg kg) ve fenitoin (20 mg / kg) tek başına veya nitrik oksit prekürsörü N(G)-Nitro-L-arginin-metil-ester (L-NAME, 5 mg/kg) ve spesifik olmayan NO sentaz inhibitörü NO, L-arginin (L-Arg, 60 mg/kg) ile kombinasyon halinde ve intraperitoneal olarak enjekte edildi.
Bulgular: Agmatin ve sodyum valproat % GTCS' yi önemli ölçüde engelliyorken, fenitoin ve gabapentin engellemedi. L-Arg, % MJ üzerinde agmatinin aktivitesini önemli ölçüde azalttı. Hem L-Arg hem de L-NAME, fenitoinin % MJ ve % GTCS üzerine olan aktivitesini etkilemedi. L-Arg, gabapentinin % MJ ve % GTCS üzerine olan aktivitesini değiştirmedi. L-NAME, gabapentinin % MJ ve % GTCS üzerine olan aktivitesini önemli ölçüde artırdı.
Sonuç Bu çalışma, NO' nun agmatin ve gabapentinin antikonvülsan aktivitesi üzerinde bir rolü olabileceğini, ancak sodyum valproat ve fenitoinin rolü olmadığını önermektedir.

References

  • 1. Su RB, Wei XL, Zheng JQ, Liu Y, Lu XQ, Li J. Anticonvulsive effect of agmatine in mice. Pharmacol Biochem Behav. 2004;77(2):345-9.
  • 2. Reeta KH, Mehla J, Pahuja M, Gupta YK. Pharmacokinetic and pharmacodynamic interactions of valproate, phenytoin, phenobarbitone and carbamazepine with curcumin in experimental models of epilepsy in rats. Pharmacol Biochem Behav. 2011;99(3):399-407.
  • 3. Luszczki JJ, Wu JZ, Raszewski G, Czuczwar SJ. Isobolographic characterization of interactions of retigabine with carbamazepine, lamotrigine, and valproate in the mouse maximal electroshock-induced seizure model. Naunyn-Schmiedeberg's archives of pharmacology. 2009;379(2):163-79.
  • 4. RA S. Sodium valproate, phenytoin and carbamazepine as sole anticonvulsants. The place of sodium valproate in the treatment of epilepsy. London: Academic Press Inc (London) Ltd and the Royal Society of Medicine; 1980. p. 7-16.
  • 5. Gruber CM BJ, Dyken MD. Comparison of the effectiveness of phenobarbital, mephobarbital, primidone, dipheylhydantoin, ethotoin, metharbital, and methylphenylhydantion in motor seizures. Clinical Pharmacology & Therapeutics 1962;3:23-8.
  • 6. Löscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov. 2013;12(10):757-76.
  • 7. French JA, Kanner AM, Bautista J, Abou-Khalil B, Browne T, Harden CL, et al. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2004;62(8):1261-73.
  • 8. French JA. Refractory epilepsy: clinical overview. Epilepsia. 2007;48 Suppl 1:3-7.
  • 9. Nevitt SJ, Sudell M, Weston J, Tudur Smith C, Marson AG. Antiepileptic drug monotherapy for epilepsy: a network meta-analysis of individual participant data. The Cochrane database of systematic reviews. 2017;12:Cd011412.
  • 10. Bence AK, Worthen DR, Stables JP, Crooks PA. An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine. Pharmacology, biochemistry, and behavior. 2003;74(3):771-5.
  • 11. Onal A, Delen Y, Ulker S, Soykan N. Agmatine attenuates neuropathic pain in rats: possible mediation of nitric oxide and noradrenergic activity in the brainstem and cerebellum. Life sciences. 2003;73(4):413-28.
  • 12. Luszczki JJ, Czernecki R, Wojtal K, Borowicz KK, Czuczwar SJ. Agmatine enhances the anticonvulsant action of phenobarbital and valproate in the mouse maximal electroshock seizure model. Journal of neural transmission (Vienna, Austria : 1996). 2008;115(11):1485-94.
  • 13. De Sarro GB, Donato Di Paola E, De Sarro A, Vidal MJ. Role of nitric oxide in the genesis of excitatory amino acid-induced seizures from the deep prepiriform cortex. Fundamental & clinical pharmacology. 1991;5(6):503-11.
  • 14. Osonoe K, Mori N, Suzuki K, Osonoe M. Antiepileptic effects of inhibitors of nitric oxide synthase examined in pentylenetetrazol-induced seizures in rats. Brain research. 1994;663(2):338-40.
  • 15. Bahremand A, Ziai P, Khodadad TK, Payandemehr B, Rahimian R, Ghasemi A, et al. Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: Involvement of L-arginine/nitric oxide pathway. Epilepsy Behav. 2010;18(3):186-92.
  • 16. Demehri S, Homayoun H, Honar H, Riazi K, Vafaie K, Roushanzamir F, et al. Agmatine exerts anticonvulsant effect in mice: modulation by alpha 2-adrenoceptors and nitric oxide. Neuropharmacology. 2003;45(4):534-42.
  • 17. Payandemehr B, Rahimian R, Bahremand A, Ebrahimi A, Saadat S, Moghaddas P, et al. Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine. Physiol Behav. 2013;118:52-7.
  • 18. Kumar A, Lalitha S, Mishra J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J Pharmacol. 2014;46(3):309-15.
  • 19. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Current protocols in neuroscience. 2012;Chapter 9:Unit9.37.
  • 20. Habib MM, Abdelfattah MA, Abadi AH. Design and Synthesis of Novel Phenylpiperazine Derivatives as Potential Anticonvulsant Agents. Arch Pharm (Weinheim). 2015;348(12):868-74.
  • 21. Swinyard EA, Kupferberg HJ. Antiepileptic drugs: detection, quantification, and evaluation. Federation proceedings. 1985;44(10):2629-33.
  • 22. Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. The Journal of pharmacology and experimental therapeutics. 2001;298(3):986-95.
  • 23. Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, et al. Role of oxidative stress in epileptic seizures. Neurochemistry international. 2011;59(2):122-37.
  • 24. Nevins ME, Arnolde SM. A comparison of the anticonvulsant effects of competitive and non-competitive antagonists of the N-methyl-D-aspartate receptor. Brain research. 1989;503(1):1-4.
  • 25. Getting SJ, Segieth J, Ahmad S, Biggs CS, Whitton PS. Biphasic modulation of GABA release by nitric oxide in the hippocampus of freely moving rats in vivo. Brain research. 1996;717(1-2):196-9.
  • 26. Talarek S, Fidecka S. Role of nitric oxide in anticonvulsant effects of benzodiazepines in mice. Polish journal of pharmacology. 2003;55(2):181-91.
  • 27. Allison C, Pratt JA. Differential effects of two chronic diazepam treatment regimes on withdrawal anxiety and AMPA receptor characteristics. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2006;31(3):602-19.
  • 28. McCaslin PP, Morgan WW. Continuously infused 2-amino-7-phosphonoheptanoic acid antagonizes N-methyl-D-aspartate-induced elevations of cyclic GMP in vivo in multiple brain areas and chemically-induced seizure activity. Neuropharmacology. 1986;25(8):905-9.
  • 29. Talarek S, Listos J, Orzelska-Gorka J, Serefko A, Kotlinska J. NMDA Receptors and NO:cGMP Signaling Pathway Mediate the Diazepam-Induced Sensitization to Withdrawal Signs in Mice. Neurotoxicity research. 2018;33(2):422-32.
  • 30. Sills GJ, Butler E, Thompson GG, Brodie MJ. Pharmacodynamic interaction studies with topiramate in the pentylenetetrazol and maximal electroshock seizure models. Seizure. 2004;13(5):287-95.
  • 31. Kaputlu I, Uzbay T. L-NAME inhibits pentylenetetrazole and strychnine-induced seizures in mice. Brain research. 1997;753(1):98-101.
  • 32. Banach M, Piskorska B, Czuczwar SJ, Borowicz KK. Nitric oxide, epileptic seizures, and action of antiepileptic drugs. CNS & neurological disorders drug targets. 2011;10(7):808-19.
  • 33. Halaris A, Plietz J. Agmatine : metabolic pathway and spectrum of activity in brain. CNS drugs. 2007;21(11):885-900.
  • 34. Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain research. 2006;1084(1):210-6.
  • 35. Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, Gasull T, Assumpcio Boronat M, Trullas R, et al. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. British journal of pharmacology. 1999;127(6):1317-26.
  • 36. Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neuroscience letters. 2005;390(3):129-33.
There are 36 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Araştırma Makaleleri
Authors

Sule Aydın 0000-0003-2498-8378

Çiğdem Toprak This is me 0000-0003-3718-5195

Çiğdem Çengelli Ünel 0000-0001-7680-0141

Bilgin Kaygısız 0000-0001-5910-9914

Kevser Erol 0000-0002-8808-6616

Publication Date March 21, 2022
Submission Date November 26, 2020
Acceptance Date February 23, 2021
Published in Issue Year 2022 Volume: 17 Issue: 1

Cite

AMA Aydın S, Toprak Ç, Çengelli Ünel Ç, Kaygısız B, Erol K. The Investigation of the Effects of Agmatine in Pentylenetetrazole-induced Epilepsy Model in Mice and the Contribution of Nitric Oxide. KSU Medical Journal. March 2022;17(1):46-52. doi:10.17517/ksutfd.831948