Research Article
BibTex RIS Cite

The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study

Year 2020, , 511 - 518, 20.10.2020
https://doi.org/10.18521/ktd.706218

Abstract

Objective: Ozone has been advised as a metabolic excitative in cell, immuno-modulatory agent and antioxidant enzyme actuator. The presentstudy was performed to designate the profit of ozone therapy on the burn wound healing in the rats.

Method: 40 adult Wistar type rats divided into 4 groups: a control group (burnno created and topical and systemic agents no used), a burn group (burn created but only saline given), a burn+silver sulfadiazine group (silver sulfadiazine was applied for 21 days), a burn+ozone/oxygen mixture group (ozone/oxygen mixture was applied for 21 days).After anesthetizing, second-degree burn (2 cm2 areas) wasdoneon the dorsal of the animals byaluminum plate in boiling hot water (100 ˚C for 15 seconds) and other groups except control groupwere treated topically, based on the time scheduled. Tissue samples were harvested on day 7st and 21st after burn injury. Biochemical and histological analyzes were performed in tissue and blood samples. The results were assessed with appropriate statistical tests and givenas Means±SD.

Results: The histopathologic damage level was significantly different in all groups. Fibrosis and inflamation levels decreased in ozone treatment and silver sulphadiazine groups compared to burn+normal saline group on the 21 days according to 7 days. In the ozone treatment group, Glucose 6-phosphate dehydrogenase activities were significantly higher than the silver sulfadiazine treated group. But glutathione reductase enzymeactivities were loverin the ozone treated group and hydroxyproline concentration decreased in ozonegroup compared to burn+normal saline group on 7 and 21 days.

Conclusion: Ozone has a detractive effect in the development of inflamation, fibrosis, and granulation via decreasing tissue damage and increasing the antioxidant enzyme activity on burn wound healing.

References

  • 1.The Pathophysıologıc Response to Severe Burn Injury. Jeschke MG, Chinkes DL, Finnerty CC, Kulp G, Suman OE, Norbury WB, et al. Ann Surg. 2008; 248(3): 387–401. 2.Arturson G. Pathophysiology of the burn wound and pharmacological treatment. The Rudi Hermans lecture. Burns. 1996;22(4):255-74. 3.Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. Journal of biophotonics. 2015;8(6):489-501. 4.Edwards LC, Dunphy JE. Wound healing I. Injury and normal repair. N EngI J Med 1958;259(5):224-33 5.Kutlubay Z, Engin B, Serdaroğlu S, Tüzün Y. Dermatolojide Ozon Tedavisi. Dermatoz 2010;1(4):209-16. 6.Bocci VA. Scientific and medical aspects of ozone therapy. State of the art. Arch Med Res. 2006;37(4):425-35. 7.Beutler E. Red Cell Metabolism: 12. London, Academic Press; 1971. 8.Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem. 1996;29(3):225-9. 9.Nalbandian RM, Henry RL, Balko KW, Adams DV, Neuman NR. Pluronic F-127 Gel Preparation as an Artificial Skin in the Treatment of 3rd-Degree Burns in Pigs. J Biomed Mater Res. 1987;21(9):1135-48. 10.Sheridan RL, Tompkins RG. Skin substitutes in burns. Burns. 1999;25(2):97-103. 11.O’Connor NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1(8211):75–8. 12.Pearson AS, Wolford RW. Management of skin trauma. Primary Care. 2000;27(2):475-92 13.Brown GL, Curtsinger LJ, White M, Mitchell RO, Pietsch J, Nordquist R, et al. Acceleration of Tensile-Strength of Incisions Treated with Egf and Tgf-Beta. Ann Surg. 1988;208(6):788-94. 14.Fu XB, Shen ZY, Chen YL, Xie JH, Guo ZR, Zhang ML, et al. Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns. Lancet. 1998;352(9141):1661-4. 15.Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 1999;20(15):1407-14. 16.Mehlman MA, Borek C. Toxicity and Biochemical-Mechanisms of Ozone. Environ Res. 1987;42(1):36-53. 17.Silva RA, Garotti JER, Silva RSB, Navarini A, Pacheco AM. Analysis of the bactericidal effect of ozone pneumoperitoneum. Acta Cir Bras. 2009;24(2):124-7. 18.Bocci V. Ozone as a bioregulator. Pharmacology and toxicology of ozonetherapy today. J Biol Reg Homeos Ag. 1996;10(2-3):31-53. 19.Bocci V, Paulesu L. Studies on the biological effects of ozone 1. Induction of interferon gamma on human leucocytes. Haematologica. 1990;75(6):510-5. 20.Buckley RD, Hackney JD, Clark K, Posin C. Ozone and human blood. Archives of environmental health. 1975;30(1):40-3. 21.Zimran A, Wasser G, Forman L, Gelbart T, Beutler E. Effect of ozone on red blood cell enzymes and intermediates. Acta haematologica. 2000;102(3):148-51. 22.Bocci V. Biological and clinical effects of ozone. Has ozone therapy a future in medicine? Brit J Biomed Sci. 1999;56(4):270-9. 23.Bocci V. Ozone as Janus: this controversial gas can be either toxic or medically useful. Mediat Inflamm. 2004;13(1):3-11. 24.Clavo B, Catala L, Perez JL, Rodriguez V, Robaina F. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report. Evid-Based Compl Alt. 2004;1(3):315-9. 25.Zamora ZB, Borrego A, Lopez OY, Delgado R, Gonzalez R, Menendez S, et al. Effects of ozone oxidative preconditioning on TNF-alpha release and antioxidant-prooxidant intracellular balance in mice during endotoxic shock. Mediat Inflamm. 2005(1):16-22. 26.Calunga JL, Zamora AB, Borrego A, del Rio S, Barber E, Menendez S, et al. Ozone therapy on rats submitted to subtotal nephrectomy: Role of antioxidant system. Mediat Inflamm. 2005(4):221-7. 27.Peralta C, Xaus C, Bartrons R, Leon OS, Gelpi E, Rosello-Catafau J. Effect of ozone treatment on reactive oxygen species and adenosine production during hepatic ischemia-reperfusion. Free Radical Res. 2000;33(5):595-605. 28.Guven A, Gundogdu G, Sadir S, Topal T, Erdogan E, Korkmaz A, et al. The efficacy of ozone therapy in experimental caustic esophageal burn. J Pediatr Surg. 2008;43(9):1679-84. 29.Martinez-Sanchez G, Al-Dalain SM, Menendez S, Re L, Giuliani A, Candelario-Jalil E, et al. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol. 2005;523(1-3):151-61. 30.Eldad A, Weinberg A, Breiterman S, Chaouat M, Palanker D, Ben-Bassat H. Early nonsurgical removal of chemically injured tissue enhances wound healing in partial thickness burns. Burns. 1998;24(2):166-72. 31.Hebda PA, Lo CY. The effects of active ingredients of standard debriding agents - Papain and collagenase - on digestion of native and denatured collagenous substrates, fibrin and elastin. Wounds. 2001;13(5):190-4. 32.Hosnuter M, Gurel A, Babuccu O, Armutcu F, Kargi E, Isikdemir A. The effect of CAPE on lipid peroxidation and nitric oxide levels in the plasma of rats following thermal injury. Burns. 2004;30(2):121-5. 33.de Gracia CG. An open study comparing topical silver sulfadiazine and topical silver sulfadiazine - cerium nitrate in the treatment of moderate and severe burns. Burns. 2001;27(1):67-74. 34.Filosa S, Fico A, Paglialunga F, Balestrieri M, Crooke A, Verde P, et al. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochem J. 2003;370:935-43. 35.Chan B, Sukhatme VP. One-step purification of soluble recombinant human 6-phosphogluconate dehydrogenase from Escherichia coli. Protein Expres Purif. 2013;92(1):62-6. 36.Au SWN, Gover S, Lam VMS, Adams MJ. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Struct Fold Des. 2000;8(3):293-303. 37.Chan EC, Jiang F, Peshavariya HM, Dusting GJ. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacology & therapeutics. 2009;122(2):97-108. 38.Xu YZ, Osborne BW, Stanton RC. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol-Renal. 2005;289(5):F1040-F7. 39.Sukhatme VP, Chan B. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. Febs Lett. 2012;586(16):2389-95. 40.Fitzmaurice SD, Sivamani RK, Isseroff RR. Antioxidant Therapies for Wound Healing: A Clinical Guide to Currently Commercially Available Products. Skin Pharmacol Phys. 2011;24(3):113-26. 41.Bardaa S, Chabchoub N, Jridi M, Moalla D, Mseddi M, Rebai T, et al. The effect of natural extracts on laser burn wound healing. J Surg Res. 2016;201(2):464-72. 42.Demling RH, Lalonde C. Systemic Lipid-Peroxidation and Inflammation Induced by Thermal-Injury Persists into the Post-Resuscitation Period. J Trauma. 1990;30(1):69-74. 43.Gunel E, Caglayan F, Caglayan O, Akillioglu I. Reactive oxygen radical levels in caustic esophageal burns. J Pediatr Surg. 1999;34(3):405-7. 44.Gunel E, Caglayan F, Caglayan O, Canbilen A, Tosun M. Effect of antioxidant therapy on collagen synthesis in corrosive esophageal burns. Pediatr Surg Int. 2002;18(1):24-7. 45.Horton JW. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology. 2003;189(1-2):75-88. 46.Ocakci A, Coskun O, Tumkaya L, Kanter M, Gurel A, Hosnuter M, et al. Beneficial effects of Ebselen on corrosive esophageal burns of rats. Int J Pediatr Otorhi. 2006;70(1):45-52.

Ozon Tedavisinin Termal Yanık Yara İyleşmesine Etkisi; Deneysel bir Çaşlışma

Year 2020, , 511 - 518, 20.10.2020
https://doi.org/10.18521/ktd.706218

Abstract

Amaç: Ozon, hücre içinde, immüno-modülatör unsur ve antioksidan enzim işleticisinde metabolik bir uyarıcı olarak önerilmiştir. Bu çalışma, sıçanlarda yanık yarası iyileşmesinde ozon tedavisinin yararını belirlemek için yapılmıştır.


Yöntem: Bu çalışma için 40 adet Wistar tipi sıçan 4 gruba ayrıldı: Bir kontrol grubu (yanık oluşturulmadı, bölgesel ve sistemik unsurlar kullanılmadı), bir yanık grubu (yanık oluşturuldu, ancak sadece salin verildi), bir yanık + gümüş sülfadiazin grubu (21 gün boyunca gümüş sülfadiazin uygulandı), bir yanık + ozon / oksijen karışımı grubu (21 gün boyunca ozon / oksijen karışımı uygulandı) oluşturuldu. Anestezi uygulandıktan sonra, kaynar sıcak suda (15 saniye boyunca 100 ˚C) alüminyum plaka ile hayvanların sırtında ikinci derece yanık (2 cm2 alan) oluşturuldu ve kontrol grubu dışındaki diğer gruplar planlanan sürede bölgesel olarak tedavi edildi. Doku örnekleri yanık hasarından sonraki 7. ve 21. günlerde elde edildi. Doku ve kan örneklerinde biyokimyasal ve histolojik analizler yapıldı. Sonuçlar uygun istatistiksel testlerle değerlendirildi ve ± SD ortalamalar olarak verildi.


Bulgular: Histopatolojik hasar düzeyi tüm gruplarda anlamlı olarak farklıydı. Ozon tedavisi ve gümüş sülfadiazin gruplarında fibroz ve inflamasyon seviyeleri, 7 güne göre 21 günde yanık + normal tuzlu su grubuna kıyasla azaldı. Ozon tedavi grubunda, Glikoz 6-fosfat dehidrogenaz aktiviteleri gümüş sülfadiazin ile tedavi edilen gruptan önemli ölçüde yüksekti. Ancak glutatyon redüktaz enzim aktiviteleri, ozon ile tedavi edilen grupta daha düşüktü ve hidroksiprolin konsantrasyonu, 7 ve 21 günde serum fizyolojik grubuna kıyasla ozon grubunda azaldı.

Sonuç: Ozon, doku hasarını azaltarak ve yanık yarası iyileşmesinde antioksidan enzim aktivitesini artırarak iltihaplanma, fibrozis ve granülasyon gelişiminde bozucu bir etkiye sahiptir.


References

  • 1.The Pathophysıologıc Response to Severe Burn Injury. Jeschke MG, Chinkes DL, Finnerty CC, Kulp G, Suman OE, Norbury WB, et al. Ann Surg. 2008; 248(3): 387–401. 2.Arturson G. Pathophysiology of the burn wound and pharmacological treatment. The Rudi Hermans lecture. Burns. 1996;22(4):255-74. 3.Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. Journal of biophotonics. 2015;8(6):489-501. 4.Edwards LC, Dunphy JE. Wound healing I. Injury and normal repair. N EngI J Med 1958;259(5):224-33 5.Kutlubay Z, Engin B, Serdaroğlu S, Tüzün Y. Dermatolojide Ozon Tedavisi. Dermatoz 2010;1(4):209-16. 6.Bocci VA. Scientific and medical aspects of ozone therapy. State of the art. Arch Med Res. 2006;37(4):425-35. 7.Beutler E. Red Cell Metabolism: 12. London, Academic Press; 1971. 8.Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem. 1996;29(3):225-9. 9.Nalbandian RM, Henry RL, Balko KW, Adams DV, Neuman NR. Pluronic F-127 Gel Preparation as an Artificial Skin in the Treatment of 3rd-Degree Burns in Pigs. J Biomed Mater Res. 1987;21(9):1135-48. 10.Sheridan RL, Tompkins RG. Skin substitutes in burns. Burns. 1999;25(2):97-103. 11.O’Connor NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1(8211):75–8. 12.Pearson AS, Wolford RW. Management of skin trauma. Primary Care. 2000;27(2):475-92 13.Brown GL, Curtsinger LJ, White M, Mitchell RO, Pietsch J, Nordquist R, et al. Acceleration of Tensile-Strength of Incisions Treated with Egf and Tgf-Beta. Ann Surg. 1988;208(6):788-94. 14.Fu XB, Shen ZY, Chen YL, Xie JH, Guo ZR, Zhang ML, et al. Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns. Lancet. 1998;352(9141):1661-4. 15.Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 1999;20(15):1407-14. 16.Mehlman MA, Borek C. Toxicity and Biochemical-Mechanisms of Ozone. Environ Res. 1987;42(1):36-53. 17.Silva RA, Garotti JER, Silva RSB, Navarini A, Pacheco AM. Analysis of the bactericidal effect of ozone pneumoperitoneum. Acta Cir Bras. 2009;24(2):124-7. 18.Bocci V. Ozone as a bioregulator. Pharmacology and toxicology of ozonetherapy today. J Biol Reg Homeos Ag. 1996;10(2-3):31-53. 19.Bocci V, Paulesu L. Studies on the biological effects of ozone 1. Induction of interferon gamma on human leucocytes. Haematologica. 1990;75(6):510-5. 20.Buckley RD, Hackney JD, Clark K, Posin C. Ozone and human blood. Archives of environmental health. 1975;30(1):40-3. 21.Zimran A, Wasser G, Forman L, Gelbart T, Beutler E. Effect of ozone on red blood cell enzymes and intermediates. Acta haematologica. 2000;102(3):148-51. 22.Bocci V. Biological and clinical effects of ozone. Has ozone therapy a future in medicine? Brit J Biomed Sci. 1999;56(4):270-9. 23.Bocci V. Ozone as Janus: this controversial gas can be either toxic or medically useful. Mediat Inflamm. 2004;13(1):3-11. 24.Clavo B, Catala L, Perez JL, Rodriguez V, Robaina F. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report. Evid-Based Compl Alt. 2004;1(3):315-9. 25.Zamora ZB, Borrego A, Lopez OY, Delgado R, Gonzalez R, Menendez S, et al. Effects of ozone oxidative preconditioning on TNF-alpha release and antioxidant-prooxidant intracellular balance in mice during endotoxic shock. Mediat Inflamm. 2005(1):16-22. 26.Calunga JL, Zamora AB, Borrego A, del Rio S, Barber E, Menendez S, et al. Ozone therapy on rats submitted to subtotal nephrectomy: Role of antioxidant system. Mediat Inflamm. 2005(4):221-7. 27.Peralta C, Xaus C, Bartrons R, Leon OS, Gelpi E, Rosello-Catafau J. Effect of ozone treatment on reactive oxygen species and adenosine production during hepatic ischemia-reperfusion. Free Radical Res. 2000;33(5):595-605. 28.Guven A, Gundogdu G, Sadir S, Topal T, Erdogan E, Korkmaz A, et al. The efficacy of ozone therapy in experimental caustic esophageal burn. J Pediatr Surg. 2008;43(9):1679-84. 29.Martinez-Sanchez G, Al-Dalain SM, Menendez S, Re L, Giuliani A, Candelario-Jalil E, et al. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol. 2005;523(1-3):151-61. 30.Eldad A, Weinberg A, Breiterman S, Chaouat M, Palanker D, Ben-Bassat H. Early nonsurgical removal of chemically injured tissue enhances wound healing in partial thickness burns. Burns. 1998;24(2):166-72. 31.Hebda PA, Lo CY. The effects of active ingredients of standard debriding agents - Papain and collagenase - on digestion of native and denatured collagenous substrates, fibrin and elastin. Wounds. 2001;13(5):190-4. 32.Hosnuter M, Gurel A, Babuccu O, Armutcu F, Kargi E, Isikdemir A. The effect of CAPE on lipid peroxidation and nitric oxide levels in the plasma of rats following thermal injury. Burns. 2004;30(2):121-5. 33.de Gracia CG. An open study comparing topical silver sulfadiazine and topical silver sulfadiazine - cerium nitrate in the treatment of moderate and severe burns. Burns. 2001;27(1):67-74. 34.Filosa S, Fico A, Paglialunga F, Balestrieri M, Crooke A, Verde P, et al. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochem J. 2003;370:935-43. 35.Chan B, Sukhatme VP. One-step purification of soluble recombinant human 6-phosphogluconate dehydrogenase from Escherichia coli. Protein Expres Purif. 2013;92(1):62-6. 36.Au SWN, Gover S, Lam VMS, Adams MJ. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Struct Fold Des. 2000;8(3):293-303. 37.Chan EC, Jiang F, Peshavariya HM, Dusting GJ. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacology & therapeutics. 2009;122(2):97-108. 38.Xu YZ, Osborne BW, Stanton RC. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol-Renal. 2005;289(5):F1040-F7. 39.Sukhatme VP, Chan B. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. Febs Lett. 2012;586(16):2389-95. 40.Fitzmaurice SD, Sivamani RK, Isseroff RR. Antioxidant Therapies for Wound Healing: A Clinical Guide to Currently Commercially Available Products. Skin Pharmacol Phys. 2011;24(3):113-26. 41.Bardaa S, Chabchoub N, Jridi M, Moalla D, Mseddi M, Rebai T, et al. The effect of natural extracts on laser burn wound healing. J Surg Res. 2016;201(2):464-72. 42.Demling RH, Lalonde C. Systemic Lipid-Peroxidation and Inflammation Induced by Thermal-Injury Persists into the Post-Resuscitation Period. J Trauma. 1990;30(1):69-74. 43.Gunel E, Caglayan F, Caglayan O, Akillioglu I. Reactive oxygen radical levels in caustic esophageal burns. J Pediatr Surg. 1999;34(3):405-7. 44.Gunel E, Caglayan F, Caglayan O, Canbilen A, Tosun M. Effect of antioxidant therapy on collagen synthesis in corrosive esophageal burns. Pediatr Surg Int. 2002;18(1):24-7. 45.Horton JW. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology. 2003;189(1-2):75-88. 46.Ocakci A, Coskun O, Tumkaya L, Kanter M, Gurel A, Hosnuter M, et al. Beneficial effects of Ebselen on corrosive esophageal burns of rats. Int J Pediatr Otorhi. 2006;70(1):45-52.
There are 1 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Kemal Peker 0000-0001-5907-0466

İsmayil Yılmaz 0000-0001-7894-3613

İsmail Demiryılmaz 0000-0001-9493-4055

Arda Isık 0000-0001-9493-4055

İlyas Sayar 0000-0002-7204-4112

Cebrail Gürsul 0000-0001-6521-6169

Murat Çankaya 0000-0001-7432-548X

Taha Abdulkadir Çoban 0000-0003-1711-5499

Publication Date October 20, 2020
Acceptance Date July 12, 2020
Published in Issue Year 2020

Cite

APA Peker, K., Yılmaz, İ., Demiryılmaz, İ., Isık, A., et al. (2020). The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study. Konuralp Medical Journal, 12(3), 511-518. https://doi.org/10.18521/ktd.706218
AMA Peker K, Yılmaz İ, Demiryılmaz İ, Isık A, Sayar İ, Gürsul C, Çankaya M, Çoban TA. The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study. Konuralp Medical Journal. October 2020;12(3):511-518. doi:10.18521/ktd.706218
Chicago Peker, Kemal, İsmayil Yılmaz, İsmail Demiryılmaz, Arda Isık, İlyas Sayar, Cebrail Gürsul, Murat Çankaya, and Taha Abdulkadir Çoban. “The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study”. Konuralp Medical Journal 12, no. 3 (October 2020): 511-18. https://doi.org/10.18521/ktd.706218.
EndNote Peker K, Yılmaz İ, Demiryılmaz İ, Isık A, Sayar İ, Gürsul C, Çankaya M, Çoban TA (October 1, 2020) The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study. Konuralp Medical Journal 12 3 511–518.
IEEE K. Peker, İ. Yılmaz, İ. Demiryılmaz, A. Isık, İ. Sayar, C. Gürsul, M. Çankaya, and T. A. Çoban, “The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study”, Konuralp Medical Journal, vol. 12, no. 3, pp. 511–518, 2020, doi: 10.18521/ktd.706218.
ISNAD Peker, Kemal et al. “The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study”. Konuralp Medical Journal 12/3 (October 2020), 511-518. https://doi.org/10.18521/ktd.706218.
JAMA Peker K, Yılmaz İ, Demiryılmaz İ, Isık A, Sayar İ, Gürsul C, Çankaya M, Çoban TA. The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study. Konuralp Medical Journal. 2020;12:511–518.
MLA Peker, Kemal et al. “The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study”. Konuralp Medical Journal, vol. 12, no. 3, 2020, pp. 511-8, doi:10.18521/ktd.706218.
Vancouver Peker K, Yılmaz İ, Demiryılmaz İ, Isık A, Sayar İ, Gürsul C, Çankaya M, Çoban TA. The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study. Konuralp Medical Journal. 2020;12(3):511-8.