Research Article
BibTex RIS Cite

Testis Torsiyonunda Rapamisin Tedavisinin Antioksidan Enzim Değişiklikleri ve AgNOR Üzerindeki Etkilerinin Değerlendirilmesi

Year 2021, , 45 - 54, 11.03.2021
https://doi.org/10.18521/ktd.845245

Abstract

Amaç: Testis torsiyonu / detorsiyonu iskemiye neden olur. Rapamisin, immün baskılayıcı ve antioksidan savunma mekanizmalarına sahiptir. Nükleolar düzenleyen bölgeler (NOR'ler) ribozomal DNA'nın döngüleridir.

Yöntem: Testislerin Torsiyon / Detorsiyon işleminde ortalama AgNOR sayısı ve toplam AgNOR alanı / toplam nükleer alan (TAA / TNA) oranını ve bu proteinler ile rapamisin arasındaki ilişkiyi değerlendirmek. Kontrol, sahte, erken ve geç torsiyon-detorsiyon (ETD & LTD) grupları ve erken ve geç rapamisin tedavi grupları (ETD + R & LTD + R) olmak üzere altı grup dahil edildi. TAA / TNA ve testis hücrelerinin ortalama AgNOR sayısı ile GPx, SOD ve TBARS aktivitelerinin biyokimyasal analizi tespit edildi.

Bulgular: Gruplar arasında ortalama AgNOR sayısı ve TAA / TNA açısından önemli farklılıklar tespit edildi (p <0.05). Hem ortalama AgNOR sayısı hem de TAA / TNA için, kontrol ile ETD arasında, kontrol ile ETD + R arasında, kontrol ile LTD arasında, kontrol ile LTD + R arasında önemli farklılıklar bulundu. Ayrıca testis hücrelerinin ortalama AgNOR sayıları ile TAA / TNA ile tüm antioksidan enzimler (SOD, TBARS ve GPX) arasında istatistiksel olarak anlamlı ilişki saptandı (p <0.05).

Sonuç: Bu proteinlerin seviyelerine göre testis hasarının seviyeleri ve süresi hakkında bilgi edinebiliriz. Bu nedenle, bu proteinlerin, T / D hasarının olumsuz etkilerini önlemek için yeni ve daha etkili terapötik yaklaşımların geliştirilmesinde kullanılabileceği söylenebilir.

References

  • 1. Hyun GS. Testicular Torsion. Rev Urol. 2018;20(2):104-106.
  • 2. Dokmeci D. Testicular torsion, oxidative stress and the role of antioxidant therapy. Folia Medica. 2006 ;48(3-4):16-21.
  • 3. Filho DW, Torres MA, Bordin AL, Crezcynski-Pasa TB, Boveris A. Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia-reperfusion injury. Mol Aspects Med. 2004;25(1-2):199-210.
  • 4. Turner TT, Bang HJ, Lysiak JL. The molecular pathology of experimental testicular torsion suggests adjunct therapy to surgical repair. J Urol. 2004;172(6 Pt 2):2574-2578.
  • 5. Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am. J. Physiol. Heart Circ. Physiol. 2011; 301: H1723–41.
  • 6. Al-Maghrebi M, Kehinde EO, Anim JT. Long term testicular ischemia-reperfusion injury-induced apoptosis: involvement of survivin down-regulation. Biochem. Biophys. Res. Commun. 2010; 395: 342–7.
  • 7. Shimizu S, Tsounapi P, Dimitriadis F, Higashi Y, Shimizu T, Saito M. Testicular torsion-detorsion and potential therapeutic treatments: A possible role for ischemic postconditioning. Int J Urol. 2016;23(6):454-463.
  • 8. Karaguzel E, Kadihasanoglu M, Kutlu O. Mechanisms of testicular torsion and potential protective agents. Nat Rev Urol. 2014;11(7):391-399.
  • 9. Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048-8067.
  • 10. Kaeberlein M. Resveratrol and rapamycin: are they anti-aging drugs?. Bioessays. 2010;32(2):96-99.
  • 11. Eroz R, Tasdemir S, Dogan H. Is there any relationship between decreased AgNOR protein synthesis and human hair loss? Biotechnic & Histochemistry 2012a; 87 (8): 494-498.
  • 12. Eroz R, Yilmaz S, Cucer N. Argyrophilic nucleolar organizing region associated protein synthesis in hair root cells of humans at different developmental stages and sex. Biotechnic & Histochem. 2013; 88(5): 267-271.
  • 13. Eroz R, Okur M, Ozkan A, Berik O, Gunes C. Does higher NORs expression affect the developmental stages of down syndrome infants? Genetic Counseling 2012b; 23(2):249-253.
  • 14. Selvi B, Demirtas H, Eroz R. Imamoglu N. Investigation of the age-dependent AgNOR protein level in buccal epithelial cells of healthy individuals. Aging Clinical and Experimental Research 2015; 27: 201-208.
  • 15. Colakoglu S, Sarıtas A, Eroz R, Oktay M, et al. Is one-time carbon monoxide intoxication harmless? Evaluation by argyrophilic nucleolar-organizing regions staining method. Human and Experimental Toxicology 2015; 34: 24-31.
  • 16. Kandis H, Afacan M.A, Eroz R, et al. Can argyrophilic nucleolar organizing region-associated protein amount be used for the detection of cardiac damage? Human and Experimental Toxicology 2015; 35: 323-331.
  • 17. Saritas A, Gunes H, Colakoglu S, et al. Are there any effects of chronic carbon monoxide exposure on argyrophilic nucleolar organizing region-associated protein synthesis in rat myocardium? Human and Experimental Toxicology Early 2015; 35 (9): 921-928.
  • 18. Eroz R, Saritas A, Colakoglu S, Oktay M, Kandis H. Evaluation of argyrophilic nucleolar organizing region–associated protein synthesis in femoral muscle cells of rats exposed 3000 ppm carbon monoxide gas. Konuralp Medical Journal 2016; 8: 9-13.
  • 19. Gunes H, Saritas A, Eroz R, Colakoglu S (2018): Use of argyrophilic nucleolar–organizer region-associated protein synthesis in skeletal muscle cells for prediction of chronic carbon monoxide exposure. Toxin Reviews.
  • 20. Eroz R, Cucer N, Karaca Z, Unluhizarci K, Ozturk F. The evaluation of argyrophilic nucleolar organizing region proteins in fine needle aspiration samples of thyroid. Endocrine Pathology 2011; 22: 74-78.
  • 21. Eroz R, Cucer N, Unluhizarcı K, Ozturk F. Detection and comparison of cutoff values for total AgNOR area/nuclear area and AgNOR number/nucleus in benign thyroid nodules and normal thyroid tissue. Cell Biology International 2013b; 37 (3): 257-261.
  • 22. Eroz R, Unluhizarcı K, Cucer N, Ozturk F. Value of argyrophilic nucleolar organizing region protein determinations in nondiagnostic fine needle aspiration samples (due to insufficient cell groups) of thyroid nodules. Analytical and Quantitative Cytology and Histology 2013a; 35: 226-232.
  • 23. Oktay M, Eroz R, Oktay NA, et al. Argyrophilic nucleolar organizing region associated protein synthesis for cytologic discrimination of follicular thyroid lesions. Biotechnic & Histochemistry 2015; 90: 179-183.
  • 24. Sonmez FT, Eroz R. The role of argyrophilic nucleolar organizing region-associated proteins in clinical exacerbation of chronic obstructive pulmonary disease. Journal of International Medical Research 2018; 46 (12): 4995-5003.
  • 25. Nisari M, Eroz R, Nisari M, et al. Investigation of argyrophilic nucleolar organizing region. Bratislava Medical Journal 2016; 117 (6): 345-350.
  • 26. Eroz R, Alpay M. Investigation of the effect of capsaicin on AgNOR protein synthesis using staining intensity degree in human colon adenocarcinoma. Edorium Journal of Cell Biology 2018; 4: 100007C06RE2018.
  • 27. Nisari M, Eröz R. Has capsaicin therapeutic benefits in human colon adenocarcinoma? Selection of the most reliable dose via AgNOR. Turk J Med Sci. 2020 Jun 3;50(4):1076-81.
  • 28. Ertekin T, Bozkurt O, Eroz R, et al. May argyrophilic nucleolar organizing region-associated protein synthesis be used for selecting the most reliable dose of drugs such as rhamnetin in cancer treatments? Bratisl Lek Listy 2016;117(11):653-658.
  • 29. Eroz R. Argyrophilic nucleolar organizing regions associated proteins in oncocytology. Oncocytology 2015; 5: 21-24.
  • 30. Benn PA, Perle M. Chromosome staining and banding techniques. In: Rooney. DE. Czepulkowski. BH (eds). Human Cytogenetics. Constitutional Analysis. practical approach. Vol 1. Oxford: Oxford University Press. 1986. pp.91–118.
  • 31. Lindner LE. Improvements in the silver-staining technique for nucleolar organizer regions (AgNOR). J Histochem Cytochem 1993; 41: 439–445.
  • 32. Rasband WS. ImageJ. U. S. National Institutes of Health. Bethesda. Maryland. USA. https://imagej.nih.gov/ij/. 1997. –2016.).
  • 33. Nisari M, Yilmaz S, Eroz R, Ertekin T, Bircan D, Ulger H. The detection of curcumins' antitumoral effects via argyrophilic nucleolar organizing region-associated protein synthesis in mice with ehrlich's ascitic carcinoma. Bratisl Lek Listy . 2017;118(1):61-65.
  • 34. Shimizu S, Saito M, Kinoshita Y, Shomori K, Satoh I, Satoh K. Ischemic preconditioning and post-conditioning to decrease testicular torsion-detorsion injury. J Urol. 2009;182(4):1637-1643.
  • 35. Kabaklıoğlu M, Kaya M, Şahin IE, Gamsızkan M, Bahçıvan A, Eröz R. Short- and long-term effects of rapamycin on ischemic damage and apoptotic changes in torsion of rat testes (published online ahead of print, 2020 Aug 19). Naunyn Schmiedebergs Arch Pharmacol. 2020;10.1007/s00210-020-01965-4.
  • 36. Blagosklonny MV. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov Today. 2007;12(5-6):218-224.
  • 37. Johnson SC, Yanos ME, Kayser EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524-1528.
  • 38. Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048-8067.
  • 39. Dao V, Liu Y, Pandeswara S, et al. Immune-Stimulatory Effects of Rapamycin Are Mediated by Stimulation of Antitumor γδ T Cells. Cancer Res. 2016;76(20):5970-5982.
  • 40. Bravo-San Pedro JM, Senovilla L. Immunostimulatory activity of lifespan-extending agents. Aging (Albany NY). 2013;5(11):793-801.
  • 41. Svatek RS, Ji N, de Leon E, et al. Rapamycin Prevents Surgery-Induced Immune Dysfunction in Patients with Bladder Cancer. Cancer Immunol Res. 2019;7(3):466-475.
  • 42. Mannick JB, Del Giudice G, Lattanzi M, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268):268ra179.
  • 43. Mannick JB, Morris M, Hockey HP, et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med. 2018;10(449):eaaq1564.
  • 44. Popovich IG, Anisimov VN, Zabezhinski MA, et al. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol Ther. 2014;15(5):586-592.
  • 45. Komarova EA, Antoch MP, Novototskaya LR, et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice. Aging (Albany NY). 2012;4(10):709-714.
  • 46. Hasty P, Livi CB, Dodds SG, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7(1):169-178.
  • 47. Livi CB, Hardman RL, Christy BA, et al. Rapamycin extends life span of Rb1+/- mice by inhibiting neuroendocrine tumors. Aging (Albany NY). 2013;5(2):100-110.
  • 48. Ceschi A, Heistermann E, Gros S, et al. Acute sirolimus overdose: a multicenter case series. PLoS One. 2015;10(5):e0128033. Published 2015 May 28.
  • 49. Hebert M, Licursi M, Jensen B, et al. Single rapamycin administration induces prolonged downward shift in defended body weight in rats. PLoS One. 2014;9(5):e93691. Published 2014 May 2.
  • 50. Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98):ra75. Published 2009 Nov 24.
  • 51. Bitto A, Ito TK, Pineda VV, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5:e16351. Published 2016 Aug 23.
  • 52. Johnson SC, Kaeberlein M. Rapamycin in aging and disease: maximizing efficacy while minimizing side effects. Oncotarget. 2016;7(29):44876-44878.
  • 53. Johnson SC, Yanos ME, Bitto A, et al. Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice. Front Genet. 2015;6:247. Published 2015 Jul 22.
  • 54. Leontieva OV, Paszkiewicz GM, Blagosklonny MV. Comparison of rapamycin schedules in mice on high-fat diet. Cell Cycle. 2014;13(21):3350-3356.
  • 55. Kirsanov O, Renegar RH, Busada JT, et al. The rapamycin analog Everolimus reversibly impairs male germ cell differentiation and fertility in the mouse†. Biol Reprod. 2020;103(5):1132-1143.

Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion

Year 2021, , 45 - 54, 11.03.2021
https://doi.org/10.18521/ktd.845245

Abstract

Objective:Testicle torsion/detorsion cause ischemia. Rapamycin has immune suppressive and antioxidant defense mechanisms. Nucleolar-organizing regions(NORs) are loops of ribosomal DNA.


Methods: To evaluate mean AgNOR number and total AgNOR area/total nuclear area(TAA/TNA) ratio and the relation between these proteins and rapamycin in the Torsion/Detorsion process of testes. The six groups as control, sham, early and late torsion-detorsion (ETD<D) groups, and early and late rapamycin treatment groups (ETD+R<D+R) were included. The TAA/TNA and mean AgNOR number of testes cells and biochemical analysis of GPx, SOD, and TBARS activities were detected.

Results: Significant differences were detected among the groups for mean AgNOR number and TAA/TNA(p<0.05). For both mean AgNOR number and TAA/TNA, significant differences were found between control and ETD, between control and ETD+R, between control and LTD, between control and LTD+R. Also, a statistically significant relationship between both mean AgNOR numbers and TAA/TNA of testes cells and all the antioxidant enzymes (SOD, TBARS, and GPX) were detected(p<0.05).

Conclusion: We may obtain information about the levels and duration of testes injury considering the levels of these proteins. Thus it can be said that these proteins may be used in the development of new and more effective therapeutic approaches to prevent the negative effects of T/D injury.

References

  • 1. Hyun GS. Testicular Torsion. Rev Urol. 2018;20(2):104-106.
  • 2. Dokmeci D. Testicular torsion, oxidative stress and the role of antioxidant therapy. Folia Medica. 2006 ;48(3-4):16-21.
  • 3. Filho DW, Torres MA, Bordin AL, Crezcynski-Pasa TB, Boveris A. Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia-reperfusion injury. Mol Aspects Med. 2004;25(1-2):199-210.
  • 4. Turner TT, Bang HJ, Lysiak JL. The molecular pathology of experimental testicular torsion suggests adjunct therapy to surgical repair. J Urol. 2004;172(6 Pt 2):2574-2578.
  • 5. Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am. J. Physiol. Heart Circ. Physiol. 2011; 301: H1723–41.
  • 6. Al-Maghrebi M, Kehinde EO, Anim JT. Long term testicular ischemia-reperfusion injury-induced apoptosis: involvement of survivin down-regulation. Biochem. Biophys. Res. Commun. 2010; 395: 342–7.
  • 7. Shimizu S, Tsounapi P, Dimitriadis F, Higashi Y, Shimizu T, Saito M. Testicular torsion-detorsion and potential therapeutic treatments: A possible role for ischemic postconditioning. Int J Urol. 2016;23(6):454-463.
  • 8. Karaguzel E, Kadihasanoglu M, Kutlu O. Mechanisms of testicular torsion and potential protective agents. Nat Rev Urol. 2014;11(7):391-399.
  • 9. Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048-8067.
  • 10. Kaeberlein M. Resveratrol and rapamycin: are they anti-aging drugs?. Bioessays. 2010;32(2):96-99.
  • 11. Eroz R, Tasdemir S, Dogan H. Is there any relationship between decreased AgNOR protein synthesis and human hair loss? Biotechnic & Histochemistry 2012a; 87 (8): 494-498.
  • 12. Eroz R, Yilmaz S, Cucer N. Argyrophilic nucleolar organizing region associated protein synthesis in hair root cells of humans at different developmental stages and sex. Biotechnic & Histochem. 2013; 88(5): 267-271.
  • 13. Eroz R, Okur M, Ozkan A, Berik O, Gunes C. Does higher NORs expression affect the developmental stages of down syndrome infants? Genetic Counseling 2012b; 23(2):249-253.
  • 14. Selvi B, Demirtas H, Eroz R. Imamoglu N. Investigation of the age-dependent AgNOR protein level in buccal epithelial cells of healthy individuals. Aging Clinical and Experimental Research 2015; 27: 201-208.
  • 15. Colakoglu S, Sarıtas A, Eroz R, Oktay M, et al. Is one-time carbon monoxide intoxication harmless? Evaluation by argyrophilic nucleolar-organizing regions staining method. Human and Experimental Toxicology 2015; 34: 24-31.
  • 16. Kandis H, Afacan M.A, Eroz R, et al. Can argyrophilic nucleolar organizing region-associated protein amount be used for the detection of cardiac damage? Human and Experimental Toxicology 2015; 35: 323-331.
  • 17. Saritas A, Gunes H, Colakoglu S, et al. Are there any effects of chronic carbon monoxide exposure on argyrophilic nucleolar organizing region-associated protein synthesis in rat myocardium? Human and Experimental Toxicology Early 2015; 35 (9): 921-928.
  • 18. Eroz R, Saritas A, Colakoglu S, Oktay M, Kandis H. Evaluation of argyrophilic nucleolar organizing region–associated protein synthesis in femoral muscle cells of rats exposed 3000 ppm carbon monoxide gas. Konuralp Medical Journal 2016; 8: 9-13.
  • 19. Gunes H, Saritas A, Eroz R, Colakoglu S (2018): Use of argyrophilic nucleolar–organizer region-associated protein synthesis in skeletal muscle cells for prediction of chronic carbon monoxide exposure. Toxin Reviews.
  • 20. Eroz R, Cucer N, Karaca Z, Unluhizarci K, Ozturk F. The evaluation of argyrophilic nucleolar organizing region proteins in fine needle aspiration samples of thyroid. Endocrine Pathology 2011; 22: 74-78.
  • 21. Eroz R, Cucer N, Unluhizarcı K, Ozturk F. Detection and comparison of cutoff values for total AgNOR area/nuclear area and AgNOR number/nucleus in benign thyroid nodules and normal thyroid tissue. Cell Biology International 2013b; 37 (3): 257-261.
  • 22. Eroz R, Unluhizarcı K, Cucer N, Ozturk F. Value of argyrophilic nucleolar organizing region protein determinations in nondiagnostic fine needle aspiration samples (due to insufficient cell groups) of thyroid nodules. Analytical and Quantitative Cytology and Histology 2013a; 35: 226-232.
  • 23. Oktay M, Eroz R, Oktay NA, et al. Argyrophilic nucleolar organizing region associated protein synthesis for cytologic discrimination of follicular thyroid lesions. Biotechnic & Histochemistry 2015; 90: 179-183.
  • 24. Sonmez FT, Eroz R. The role of argyrophilic nucleolar organizing region-associated proteins in clinical exacerbation of chronic obstructive pulmonary disease. Journal of International Medical Research 2018; 46 (12): 4995-5003.
  • 25. Nisari M, Eroz R, Nisari M, et al. Investigation of argyrophilic nucleolar organizing region. Bratislava Medical Journal 2016; 117 (6): 345-350.
  • 26. Eroz R, Alpay M. Investigation of the effect of capsaicin on AgNOR protein synthesis using staining intensity degree in human colon adenocarcinoma. Edorium Journal of Cell Biology 2018; 4: 100007C06RE2018.
  • 27. Nisari M, Eröz R. Has capsaicin therapeutic benefits in human colon adenocarcinoma? Selection of the most reliable dose via AgNOR. Turk J Med Sci. 2020 Jun 3;50(4):1076-81.
  • 28. Ertekin T, Bozkurt O, Eroz R, et al. May argyrophilic nucleolar organizing region-associated protein synthesis be used for selecting the most reliable dose of drugs such as rhamnetin in cancer treatments? Bratisl Lek Listy 2016;117(11):653-658.
  • 29. Eroz R. Argyrophilic nucleolar organizing regions associated proteins in oncocytology. Oncocytology 2015; 5: 21-24.
  • 30. Benn PA, Perle M. Chromosome staining and banding techniques. In: Rooney. DE. Czepulkowski. BH (eds). Human Cytogenetics. Constitutional Analysis. practical approach. Vol 1. Oxford: Oxford University Press. 1986. pp.91–118.
  • 31. Lindner LE. Improvements in the silver-staining technique for nucleolar organizer regions (AgNOR). J Histochem Cytochem 1993; 41: 439–445.
  • 32. Rasband WS. ImageJ. U. S. National Institutes of Health. Bethesda. Maryland. USA. https://imagej.nih.gov/ij/. 1997. –2016.).
  • 33. Nisari M, Yilmaz S, Eroz R, Ertekin T, Bircan D, Ulger H. The detection of curcumins' antitumoral effects via argyrophilic nucleolar organizing region-associated protein synthesis in mice with ehrlich's ascitic carcinoma. Bratisl Lek Listy . 2017;118(1):61-65.
  • 34. Shimizu S, Saito M, Kinoshita Y, Shomori K, Satoh I, Satoh K. Ischemic preconditioning and post-conditioning to decrease testicular torsion-detorsion injury. J Urol. 2009;182(4):1637-1643.
  • 35. Kabaklıoğlu M, Kaya M, Şahin IE, Gamsızkan M, Bahçıvan A, Eröz R. Short- and long-term effects of rapamycin on ischemic damage and apoptotic changes in torsion of rat testes (published online ahead of print, 2020 Aug 19). Naunyn Schmiedebergs Arch Pharmacol. 2020;10.1007/s00210-020-01965-4.
  • 36. Blagosklonny MV. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov Today. 2007;12(5-6):218-224.
  • 37. Johnson SC, Yanos ME, Kayser EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524-1528.
  • 38. Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048-8067.
  • 39. Dao V, Liu Y, Pandeswara S, et al. Immune-Stimulatory Effects of Rapamycin Are Mediated by Stimulation of Antitumor γδ T Cells. Cancer Res. 2016;76(20):5970-5982.
  • 40. Bravo-San Pedro JM, Senovilla L. Immunostimulatory activity of lifespan-extending agents. Aging (Albany NY). 2013;5(11):793-801.
  • 41. Svatek RS, Ji N, de Leon E, et al. Rapamycin Prevents Surgery-Induced Immune Dysfunction in Patients with Bladder Cancer. Cancer Immunol Res. 2019;7(3):466-475.
  • 42. Mannick JB, Del Giudice G, Lattanzi M, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268):268ra179.
  • 43. Mannick JB, Morris M, Hockey HP, et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med. 2018;10(449):eaaq1564.
  • 44. Popovich IG, Anisimov VN, Zabezhinski MA, et al. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol Ther. 2014;15(5):586-592.
  • 45. Komarova EA, Antoch MP, Novototskaya LR, et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice. Aging (Albany NY). 2012;4(10):709-714.
  • 46. Hasty P, Livi CB, Dodds SG, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7(1):169-178.
  • 47. Livi CB, Hardman RL, Christy BA, et al. Rapamycin extends life span of Rb1+/- mice by inhibiting neuroendocrine tumors. Aging (Albany NY). 2013;5(2):100-110.
  • 48. Ceschi A, Heistermann E, Gros S, et al. Acute sirolimus overdose: a multicenter case series. PLoS One. 2015;10(5):e0128033. Published 2015 May 28.
  • 49. Hebert M, Licursi M, Jensen B, et al. Single rapamycin administration induces prolonged downward shift in defended body weight in rats. PLoS One. 2014;9(5):e93691. Published 2014 May 2.
  • 50. Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98):ra75. Published 2009 Nov 24.
  • 51. Bitto A, Ito TK, Pineda VV, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5:e16351. Published 2016 Aug 23.
  • 52. Johnson SC, Kaeberlein M. Rapamycin in aging and disease: maximizing efficacy while minimizing side effects. Oncotarget. 2016;7(29):44876-44878.
  • 53. Johnson SC, Yanos ME, Bitto A, et al. Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice. Front Genet. 2015;6:247. Published 2015 Jul 22.
  • 54. Leontieva OV, Paszkiewicz GM, Blagosklonny MV. Comparison of rapamycin schedules in mice on high-fat diet. Cell Cycle. 2014;13(21):3350-3356.
  • 55. Kirsanov O, Renegar RH, Busada JT, et al. The rapamycin analog Everolimus reversibly impairs male germ cell differentiation and fertility in the mouse†. Biol Reprod. 2020;103(5):1132-1143.
There are 55 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Murat Kabaklıoğlu 0000-0002-2894-0470

Recep Eröz 0000-0003-0840-2613

Murat Kaya 0000-0001-6650-0145

Publication Date March 11, 2021
Acceptance Date January 28, 2021
Published in Issue Year 2021

Cite

APA Kabaklıoğlu, M., Eröz, R., & Kaya, M. (2021). Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion. Konuralp Medical Journal, 13(1), 45-54. https://doi.org/10.18521/ktd.845245
AMA Kabaklıoğlu M, Eröz R, Kaya M. Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion. Konuralp Medical Journal. March 2021;13(1):45-54. doi:10.18521/ktd.845245
Chicago Kabaklıoğlu, Murat, Recep Eröz, and Murat Kaya. “Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion”. Konuralp Medical Journal 13, no. 1 (March 2021): 45-54. https://doi.org/10.18521/ktd.845245.
EndNote Kabaklıoğlu M, Eröz R, Kaya M (March 1, 2021) Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion. Konuralp Medical Journal 13 1 45–54.
IEEE M. Kabaklıoğlu, R. Eröz, and M. Kaya, “Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion”, Konuralp Medical Journal, vol. 13, no. 1, pp. 45–54, 2021, doi: 10.18521/ktd.845245.
ISNAD Kabaklıoğlu, Murat et al. “Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion”. Konuralp Medical Journal 13/1 (March 2021), 45-54. https://doi.org/10.18521/ktd.845245.
JAMA Kabaklıoğlu M, Eröz R, Kaya M. Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion. Konuralp Medical Journal. 2021;13:45–54.
MLA Kabaklıoğlu, Murat et al. “Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion”. Konuralp Medical Journal, vol. 13, no. 1, 2021, pp. 45-54, doi:10.18521/ktd.845245.
Vancouver Kabaklıoğlu M, Eröz R, Kaya M. Evaluation of the Effects of Rapamycin Treatment on Antioxidant Enzyme Changes and AgNOR in Testicular Torsion. Konuralp Medical Journal. 2021;13(1):45-54.