Review
BibTex RIS Cite

Use of Camelina (Camelina sativa) in Poultry and Ruminant Feeds, Production of Biodiesel and Use as an Alternative Fuel to Petroleum

Year 2024, Volume: 2 Issue: 1, 1 - 11, 30.06.2024

Abstract

Camelina plant (Camelina sativa) is an oilseed that can adapt to a wide range of agricultural conditions and is an environmentally friendly product that has been used by humans for decades. By-products from oil extraction are high in protein and are used in ruminant animal rations. However, considering the antinutritional factor content of these by-products, more research is needed on their nutritional value. Studies have investigated the effects of camelina seed on feed intake, digestion and metabolism at higher intake levels. In addition, the ever-increasing energy demand due to global population growth, decreasing fossil fuel reserves and environmental concerns; The necessity of obtaining renewable and sustainable alternative energy sources from non-food products has emerged. Biodiesel, a renewable, non-toxic and biodegradable fuel, can be used in diesel engines without engine modifications. But bioenergy feedstock crops can compete with food and forage crops in agricultural areas, resulting in increased food prices and potentially significant economic destabilization. Therefore, it has been proposed to use marginal agricultural lands for the production of bioenergy raw materials. The seeds of the camelina (Camelina sativa) plant, which is very suitable for marginal areas, have come to the fore in recent years as an important biofuel source. Cayenne seeds' high oil content (25-48%) and low production cost are an important advantage. In this review, a summary of international studies on the use of camelina in ruminant feeding, the conversion of camelina to biofuel, the properties of the obtained fuel, its usage areas, standards and environmental impact is presented.

References

  • Aslam, M., Usama, M., Nabi, H., Ahmad, N., Parveen, B., Bilawal Akram, H. M., & Zafar, U. B. (2019). Camelina sativa biodiesel cope the burning issue of global worming; current status and future predictions. Modern Concepts and Developments in Agronomy, 3, MCDA-000573.
  • Ayaşan, T. (2014). Ketencik bitkisinin (Camelina sativa) kanatlı beslenmesinde kullanılması. KSÜ Doğa Bilimleri Dergisi, 17(2), 10-13.
  • Aziza, A. E., Awadin, W. F., Quezada, N., Cherian, G. (2014). Gastrointestinal morphology, fatty acid profile, and production performance of broiler chickens fed camelina meal or fish oil. Eur. J. Lipid Sci. Technol., 116, 1-7.
  • Bayat, A. R., Kairenius, P., Stefański, T., Leskinen, H., Comtet-Marre, S., Forano, E., Chaucheyras-Durand F., & Shingfield, K. J. (2015). Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. Journal of dairy science, 98(5), 3166-3181. http://doi.org/10.3168/jds.2014-7976.
  • Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial crops and products, 94, 690-710.
  • Boscaro, V., Boffa, L., Binello, A., Amisano, G., Fornasero S., Cravotto G. ve Gallicchio, M. (2018). Antiproliferative, Proapoptotic, Antioxidant and Antimicrobial Effects of Sinapis nigra L. and Sinapis alba L. Extracts. Molecules, 23(11), 3004.
  • Cappellozza, B. I., Cooke, R. F., Bohnert, D. W., Cherian, G., & Carroll, J. A. (2012). Effects of camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle. Journal of Animal Science, 90(11), 4042-4054.
  • Chaturvedi, S., Bhattacharya, A., Khare, S. K., Kaushik, G. (2019). Camelina sativa: an emerging biofuel crop. In C. Hussain (Ed.), Handbook of Environmental Materials Management, pp (1-38). https://doi.org/10.1007/978-3-319-73645-7_110.
  • Cherian, G. (2012). Camelina sativa in poultry diets: opportunities and challenges. In H. P.S. Makkar (Eds), Biofuel co-products as livestock feed - Opportunities and challenges (pp. 303-310). FAO.
  • Cieslak, A., Stanisz, M., Wojtowski, J., Pers-Kamczyc, E., Szczechowiak, J., El-Sherbiny, M., Szumacher-Strabel, M. (2013). Camelina sativa affects the fatty acid contents in M. longissimus muscle of lambs. Eur. J. Lipid Sci. Technol, 115, 1258–1265.
  • Ciurescu, G., Ropota, M., Toncea, I., & Habeanu, M. (2016). Camelia (Camelina sativa L. Crantz Variety) oil and seeds as n-3 fatty acids rich products in broiler diets and its effects on performance, meat fatty acid composition, immune tissue weights, and plasma metabolic profile. JAST, 18 (2), 315-326.
  • Colombini, S., Broderick, G. A., Galasso, I., Martinelli, T., Rapetti, L., Russo, R., & Reggiani, R. (2014). Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. Journal of the Science of Food and Agriculture, 94(4), 736-743.
  • Colonna, M. A., Giannico, F., Tufarelli, V., Laudadio, V., Selvaggi, M., De Mastro, G., Tedone, L. (2021). Dietary Supplementation with Camelina sativa (L. Crantz) Forage in Autochthonous Ionica Goats: Effects on Milk and Caciotta Cheese Chemical, Fatty Acid Composition and Sensory Properties. Animals, 11, 1589.
  • Dai, X., Weimer, P. J., Dill-McFarland, K. A., Brandao, V. L., Suen, G., Faciola, A. P. (2017) Camelina seed supplementation at two dietary fat levels change ruminal bacterial community composition in a dual-flow continuous culture system. Front. Microbiol., 8, 2147.
  • Dal Bosco, A., Mugnai, C., Roscini, V., Mattioli, S., Ruggeri, S., Castellini, C. (2014). Effect of dietary alfalfa on the fatty acid composition and indexes of lipid metabolism of rabbit meat. Meat Science, 96(1), 606-609. http://doi.org/10.1016/j.meatsci.2013.08.027
  • Dangol, N., Shrestha, D. S., Duffield, J. A. (2015). Transactions of the ASABE, 58(2), 465-475. http://doi.org/10.13031/trans.58.10771.
  • Ebeid, H. M., Hassan, F. U., Li, M., Peng, L., Peng, K., Liang, X., & Yang, C. (2020). Camelina sativa L. oil mitigates enteric in vitro methane production, modulates ruminal fermentation, and ruminal bacterial diversity in buffaloes. Frontiers in Veterinary Science, 7, 550. http://doi.org/10.3389/fvets.2020.00550.
  • Faure, J. D., Tepfer, M. (2016). Camelina, a Swiss knife for plant lipid biotechnology. OCL, 23(5), D503.
  • Iskandarov, U., Kim, H.J., Cahoon, E.B. (2014). Camelina: An Emerging Oilseed Platform for Advanced Biofuels and Bio-Based Materials. In: McCann, M., Buckeridge, M., Carpita, N. (Eds), Plants and BioEnergy (pp.131-140). Advances in Plant Biology. https://doi.org/10.1007/978-1-4614-9329-7_8
  • Jaśkiewicz, T., Sagan, A., Puzio, I. (2014). Effect of the Camelina sativa oil on the performance, essential fatty acid level in tissues and fat-soluble vitamins content in the livers of broiler chickens Livest. Sci., 165, 74-79.
  • Jiang, Y., Caldwell, C. D., & Falk, K. C. (2014). Camelina seed quality in response to applied nitrogen, genotype and environment. Canadian Journal of Plant Science, 94(5), 971-980.
  • Juodka, R., Nainienė, R., Juškienė, V., Juška, R., Leikus, R., Kadžienė, G., & Stankevičienė, D. (2022). Camelina (Camelina sativa (L.) Crantz) as feedstuffs in meat type poultry diet: A source of protein and n-3 fatty acids. Animals, 12(3), 295.
  • Krohn, B. J., & Fripp, M. (2012). A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA. Applied Energy, 92, 92-98.
  • Kruczyński, S. W. (2013). Performance and emission of CI engine fuelled with Camelina sativa oil. Energy Conversion and Management, 65, 1-6.
  • Lawrence, R. D., Anderson, J. L., & Clapper, J. A. (2016). Evaluation of camelina meal as a feedstuff for growing dairy heifers. Journal of Dairy Science, 99(8), 6215–6228. https://doi.org/10.3168/jds.2016-10876
  • Meher, L. C., Churamani, C. P., Arif, M. D., Ahmed, Z., & Naik, S. N. (2013). Jatropha curcas as a renewable source for bio-fuels—A review. Renewable and Sustainable Energy Reviews, 26, 397-407.
  • Mofijur, M., Masjuki, H. H., Kalam, M. A., Hazrat, M. A., Liaquat, A. M., Shahabuddin, M., & Varman, M. (2012). Prospects of biodiesel from Jatropha in Malaysia. Renewable and sustainable energy reviews, 16(7), 5007-5020.
  • Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8.
  • Mupondwa, E., Li, X., Tabil, L., Falk, K., & Gugel, R. (2016). Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian Prairies. Biomass and Bioenergy, 95, 221-234.
  • Oni, B. A., Oluwatosin, D. (2020). Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine. Renewable Energy, 149(C), 725-734. http://doi.org/10.1016/j.renene.2019.12.012.
  • Orczewska-Dudek, S., & Pietras, M. (2019). The effect of dietary Camelina sativa oil or cake in the diets of broiler chickens on growth performance, fatty acid profile, and sensory quality of meat. Animals, 9(10), 734.
  • Paula, E.M., da Silva, L.G., Brandao, V.L.N., Dai, X., Faciola, A.P. (2019). Feeding canola, camelina, and carinata meals to ruminants. Animals, 9(10), 704.
  • Pekel, A. Y., Kim, J. I., Chapple, C., & Adeola, O. (2015). Nutritional characteristics of camelina meal for 3-week-old broiler chickens. Poultry Science, 94(3), 371-378.
  • Pietras, M. P., & Orczewska-Dudek, S. (2013). The Effect of Dietary Camelina sativa Oil on Quality of Broiler Chicken Meat. Annals of Animal Science, 13(4), 869-882.
  • Pikul, J., Wójtowski J., Danków R., Teichert J., Czyżak-Runowska G., Cais-Sokolińska D., Cieślak A., Szumacher-Strabel M., Bagnicka E. (2014). The effect of false flax (Camelina sativa) cake dietary supplementation in dairy goats on fatty acid profile of kefir. Small Rumin. Res. 122, 44–49. http://doi.org/10.1016/j.smallrumres.2014.07.015.
  • Riaz, R., Ahmed, I., Sizmaz, O., & Ahsan, U. (2022). Use of Camelina sativa and by-products in diets for dairy cows: A Review. Animals, 12(9), 1082.
  • Sarramone, J. P., Gervais, R., Benchaar, C., & Chouinard, P. Y. (2020). Lactation performance and milk fatty acid composition of lactating dairy cows fed Camelina sativa seeds or expeller. Animal Feed Science and Technology, 270, 114697. https://doi.org/10.3168/jds.2016-10876.pmid: 27236759.
  • Seydoşoğlu, S., Sevilmiş, U., & Sevilmiş, D. (2019). Ketencik Bitkisinin (Camelina sativa (L.) Crantz) Yem Potansiyelinin Araştirilmasi. Journal On Mathematic, Engineering And Natural Sciences (Ejons), 3(10), 15–24.
  • Sıralı, R., Uğur, A., Zambi, O., Dikmen, A., Çağlar, S. (2013). Turpgiller (Brassicaceae) familyasına ait bazı türlerin arıcılık açısından önemi. Akademik Ziraat Dergisi, 2(2): 107-115.
  • Sızmaz, Ö., Çalık, A., & Bundur, A. (2021). In vitro fermentation characteristics of camelina meal comparison with soybean meal. Livestock Studies, 61(1), 9-13.
  • Sizmaz, O., Calik, A., Sizmaz, S., Yildiz, G. (2016). A comparison of camelina meal and soybean meal degradation during incubation with rumen fluid as tested in vitro. Ank. Univ. Vet. Fak. Derg., 63, 157–161.
  • Steppa, R., Cieślak, A., Szumacher-Strabel, M., Bielińska-Nowak, S., Bryszak, M., Stanisz, M., Szkudelska, K. (2017). Blood Serum Metabolic Profile and Fatty Acid Composition İn Sheep Fed Concentrates With Camelina sativa Cake And Distillers Dried Grains With Solubles. Small Ruminant Research, 156, 20-26.
  • Ülgen, H. (2019). Türkiye’de yetiştirilen ketencik bitkisinin [Camelina sativa (l.) crantz] antioksidan, antimikrobiyal, antifungal, antibiyofilm özelliklerinin ve tohum morfolojisinin araştırılması. (Publication No. 556931) [Master's thesis, Bartın University]. acikerisim.bartin.edu.tr. https://acikerisim.bartin.edu.tr/handle/11772/2014?show=full, Erişim Tarihi: 17 February 2024.
  • Veljković, V. B., Kostić, M. D., & Stamenković, O. S. (2022). Camelina seed harvesting, storing, pretreating, and processing to recover oil: A review. Industrial Crops and Products, 178, 114539.
  • Xue, J., Grift, T. E., & Hansen, A. C. (2011). Effect of biodiesel on engine performances and emissions. Renewable and Sustainable energy reviews, 15(2), 1098-1116.
  • Zanetti, F., Alberghini, B., Marjanović Jeromela, A., Grahovac, N., Rajković, D., Kiprovski, B., & Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agron. Sustain. Dev. 41(2), 1-18. https://doi.org/10.1007/s13593-020-00663-y

Ketencik bitkisinin (Camelina sativa) Kanatlı ve Ruminant Yemlerinde Kullanımı, Biyodizel Üretimi ve Petrole Alternatif Yakıt Olarak Kullanımı

Year 2024, Volume: 2 Issue: 1, 1 - 11, 30.06.2024

Abstract

Camelina sativa, çok çeşitli tarım koşullarına uyum sağlayabilen yağlı bir tohumdur ve insanlar tarafından onlarca yıldır kullanılan çevre dostu bir üründür. Yağ ekstraksiyonundan elde edilen yan ürünler protein açısından yüksektir ve geviş getiren hayvan rasyonlarında kullanılır. Ancak bu yan ürünlerin antinutrisyonel faktör içeriği göz önüne alındığında, besin değerleri konusunda daha fazla araştırmaya ihtiyaç vardır. Çalışmalar, keten tohumunun daha yüksek alım seviyelerinde yem alımı, sindirim ve metabolizma üzerindeki etkilerini araştırmıştır. Ayrıca, nüfustaki yükselme, yenilemeyen enerji kaynakalrındaki azalma ve çevre kirliliğine yönelik endişeler sebebiyle enerji talebindeki artış; hem bitmeyen hem de devamlılığı olan enerji seçeneklerinin insan beslemede kullanılmayan mahsullerden elde edilmesi gerekliliği ortaya çıkmıştır. Biyodizel hem bitmeyen hem de devamlılığı olan, zehirli olmayan ve biyolojik anlamda kolay yok olabilen bir yakıt olup, motorda herhangi bir değişiklik yapılmadan dizel motor ile çalışan araçlarda kullanılma olanağı sunmaktadır. bununla beraber biyokütle enerjisi elde edilen ürünlerin ekili yerlerdeki hem yemeklik hem de yem olarak kullanılacak ürünlerle yarış etmesi sonucu, fiyat artışı söz konusu olacak ve ekonomik anlamda bir düzensizlik olacaktır. Bundan sebeple çevresinde tarım arazisi olmayan arazilerin biyokütle enerjisi için gerekli olan ürünlerin üretimi için kullanılmasının avantajlı olacağı düşünülmektedir. Camelina sativa (ketencik) bitkisi'nin tohumundan elde edilecek yağın biyoyakıt olarak kullanılmas potansiyeli olduğu ve bu bitkini tarım arazisi dışında kalan alanlarda (marjinal) ekime uygun olacağı ile ilgili son zamanlarda gündeme gelmiştir. Camelina sativa tohumlarının %25-48 oranında içerdiği yağ ve az maliyetle üretiminin yapılması bir avantajdır. Bu çalışmada, ketenciklerin kanatlı ve ruminant beslemede kullanımı, ketenciklerin biyoyakıta dönüştürülmesi, elde edilen yakıtın özellikleri, kullanım alanları, standartları ve çevresel etkileri ile ilgili yapılan ulusal ve uluslararası çalışmaların bir derlemesi sunulmaktadır.

References

  • Aslam, M., Usama, M., Nabi, H., Ahmad, N., Parveen, B., Bilawal Akram, H. M., & Zafar, U. B. (2019). Camelina sativa biodiesel cope the burning issue of global worming; current status and future predictions. Modern Concepts and Developments in Agronomy, 3, MCDA-000573.
  • Ayaşan, T. (2014). Ketencik bitkisinin (Camelina sativa) kanatlı beslenmesinde kullanılması. KSÜ Doğa Bilimleri Dergisi, 17(2), 10-13.
  • Aziza, A. E., Awadin, W. F., Quezada, N., Cherian, G. (2014). Gastrointestinal morphology, fatty acid profile, and production performance of broiler chickens fed camelina meal or fish oil. Eur. J. Lipid Sci. Technol., 116, 1-7.
  • Bayat, A. R., Kairenius, P., Stefański, T., Leskinen, H., Comtet-Marre, S., Forano, E., Chaucheyras-Durand F., & Shingfield, K. J. (2015). Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. Journal of dairy science, 98(5), 3166-3181. http://doi.org/10.3168/jds.2014-7976.
  • Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial crops and products, 94, 690-710.
  • Boscaro, V., Boffa, L., Binello, A., Amisano, G., Fornasero S., Cravotto G. ve Gallicchio, M. (2018). Antiproliferative, Proapoptotic, Antioxidant and Antimicrobial Effects of Sinapis nigra L. and Sinapis alba L. Extracts. Molecules, 23(11), 3004.
  • Cappellozza, B. I., Cooke, R. F., Bohnert, D. W., Cherian, G., & Carroll, J. A. (2012). Effects of camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle. Journal of Animal Science, 90(11), 4042-4054.
  • Chaturvedi, S., Bhattacharya, A., Khare, S. K., Kaushik, G. (2019). Camelina sativa: an emerging biofuel crop. In C. Hussain (Ed.), Handbook of Environmental Materials Management, pp (1-38). https://doi.org/10.1007/978-3-319-73645-7_110.
  • Cherian, G. (2012). Camelina sativa in poultry diets: opportunities and challenges. In H. P.S. Makkar (Eds), Biofuel co-products as livestock feed - Opportunities and challenges (pp. 303-310). FAO.
  • Cieslak, A., Stanisz, M., Wojtowski, J., Pers-Kamczyc, E., Szczechowiak, J., El-Sherbiny, M., Szumacher-Strabel, M. (2013). Camelina sativa affects the fatty acid contents in M. longissimus muscle of lambs. Eur. J. Lipid Sci. Technol, 115, 1258–1265.
  • Ciurescu, G., Ropota, M., Toncea, I., & Habeanu, M. (2016). Camelia (Camelina sativa L. Crantz Variety) oil and seeds as n-3 fatty acids rich products in broiler diets and its effects on performance, meat fatty acid composition, immune tissue weights, and plasma metabolic profile. JAST, 18 (2), 315-326.
  • Colombini, S., Broderick, G. A., Galasso, I., Martinelli, T., Rapetti, L., Russo, R., & Reggiani, R. (2014). Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. Journal of the Science of Food and Agriculture, 94(4), 736-743.
  • Colonna, M. A., Giannico, F., Tufarelli, V., Laudadio, V., Selvaggi, M., De Mastro, G., Tedone, L. (2021). Dietary Supplementation with Camelina sativa (L. Crantz) Forage in Autochthonous Ionica Goats: Effects on Milk and Caciotta Cheese Chemical, Fatty Acid Composition and Sensory Properties. Animals, 11, 1589.
  • Dai, X., Weimer, P. J., Dill-McFarland, K. A., Brandao, V. L., Suen, G., Faciola, A. P. (2017) Camelina seed supplementation at two dietary fat levels change ruminal bacterial community composition in a dual-flow continuous culture system. Front. Microbiol., 8, 2147.
  • Dal Bosco, A., Mugnai, C., Roscini, V., Mattioli, S., Ruggeri, S., Castellini, C. (2014). Effect of dietary alfalfa on the fatty acid composition and indexes of lipid metabolism of rabbit meat. Meat Science, 96(1), 606-609. http://doi.org/10.1016/j.meatsci.2013.08.027
  • Dangol, N., Shrestha, D. S., Duffield, J. A. (2015). Transactions of the ASABE, 58(2), 465-475. http://doi.org/10.13031/trans.58.10771.
  • Ebeid, H. M., Hassan, F. U., Li, M., Peng, L., Peng, K., Liang, X., & Yang, C. (2020). Camelina sativa L. oil mitigates enteric in vitro methane production, modulates ruminal fermentation, and ruminal bacterial diversity in buffaloes. Frontiers in Veterinary Science, 7, 550. http://doi.org/10.3389/fvets.2020.00550.
  • Faure, J. D., Tepfer, M. (2016). Camelina, a Swiss knife for plant lipid biotechnology. OCL, 23(5), D503.
  • Iskandarov, U., Kim, H.J., Cahoon, E.B. (2014). Camelina: An Emerging Oilseed Platform for Advanced Biofuels and Bio-Based Materials. In: McCann, M., Buckeridge, M., Carpita, N. (Eds), Plants and BioEnergy (pp.131-140). Advances in Plant Biology. https://doi.org/10.1007/978-1-4614-9329-7_8
  • Jaśkiewicz, T., Sagan, A., Puzio, I. (2014). Effect of the Camelina sativa oil on the performance, essential fatty acid level in tissues and fat-soluble vitamins content in the livers of broiler chickens Livest. Sci., 165, 74-79.
  • Jiang, Y., Caldwell, C. D., & Falk, K. C. (2014). Camelina seed quality in response to applied nitrogen, genotype and environment. Canadian Journal of Plant Science, 94(5), 971-980.
  • Juodka, R., Nainienė, R., Juškienė, V., Juška, R., Leikus, R., Kadžienė, G., & Stankevičienė, D. (2022). Camelina (Camelina sativa (L.) Crantz) as feedstuffs in meat type poultry diet: A source of protein and n-3 fatty acids. Animals, 12(3), 295.
  • Krohn, B. J., & Fripp, M. (2012). A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA. Applied Energy, 92, 92-98.
  • Kruczyński, S. W. (2013). Performance and emission of CI engine fuelled with Camelina sativa oil. Energy Conversion and Management, 65, 1-6.
  • Lawrence, R. D., Anderson, J. L., & Clapper, J. A. (2016). Evaluation of camelina meal as a feedstuff for growing dairy heifers. Journal of Dairy Science, 99(8), 6215–6228. https://doi.org/10.3168/jds.2016-10876
  • Meher, L. C., Churamani, C. P., Arif, M. D., Ahmed, Z., & Naik, S. N. (2013). Jatropha curcas as a renewable source for bio-fuels—A review. Renewable and Sustainable Energy Reviews, 26, 397-407.
  • Mofijur, M., Masjuki, H. H., Kalam, M. A., Hazrat, M. A., Liaquat, A. M., Shahabuddin, M., & Varman, M. (2012). Prospects of biodiesel from Jatropha in Malaysia. Renewable and sustainable energy reviews, 16(7), 5007-5020.
  • Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8.
  • Mupondwa, E., Li, X., Tabil, L., Falk, K., & Gugel, R. (2016). Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian Prairies. Biomass and Bioenergy, 95, 221-234.
  • Oni, B. A., Oluwatosin, D. (2020). Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine. Renewable Energy, 149(C), 725-734. http://doi.org/10.1016/j.renene.2019.12.012.
  • Orczewska-Dudek, S., & Pietras, M. (2019). The effect of dietary Camelina sativa oil or cake in the diets of broiler chickens on growth performance, fatty acid profile, and sensory quality of meat. Animals, 9(10), 734.
  • Paula, E.M., da Silva, L.G., Brandao, V.L.N., Dai, X., Faciola, A.P. (2019). Feeding canola, camelina, and carinata meals to ruminants. Animals, 9(10), 704.
  • Pekel, A. Y., Kim, J. I., Chapple, C., & Adeola, O. (2015). Nutritional characteristics of camelina meal for 3-week-old broiler chickens. Poultry Science, 94(3), 371-378.
  • Pietras, M. P., & Orczewska-Dudek, S. (2013). The Effect of Dietary Camelina sativa Oil on Quality of Broiler Chicken Meat. Annals of Animal Science, 13(4), 869-882.
  • Pikul, J., Wójtowski J., Danków R., Teichert J., Czyżak-Runowska G., Cais-Sokolińska D., Cieślak A., Szumacher-Strabel M., Bagnicka E. (2014). The effect of false flax (Camelina sativa) cake dietary supplementation in dairy goats on fatty acid profile of kefir. Small Rumin. Res. 122, 44–49. http://doi.org/10.1016/j.smallrumres.2014.07.015.
  • Riaz, R., Ahmed, I., Sizmaz, O., & Ahsan, U. (2022). Use of Camelina sativa and by-products in diets for dairy cows: A Review. Animals, 12(9), 1082.
  • Sarramone, J. P., Gervais, R., Benchaar, C., & Chouinard, P. Y. (2020). Lactation performance and milk fatty acid composition of lactating dairy cows fed Camelina sativa seeds or expeller. Animal Feed Science and Technology, 270, 114697. https://doi.org/10.3168/jds.2016-10876.pmid: 27236759.
  • Seydoşoğlu, S., Sevilmiş, U., & Sevilmiş, D. (2019). Ketencik Bitkisinin (Camelina sativa (L.) Crantz) Yem Potansiyelinin Araştirilmasi. Journal On Mathematic, Engineering And Natural Sciences (Ejons), 3(10), 15–24.
  • Sıralı, R., Uğur, A., Zambi, O., Dikmen, A., Çağlar, S. (2013). Turpgiller (Brassicaceae) familyasına ait bazı türlerin arıcılık açısından önemi. Akademik Ziraat Dergisi, 2(2): 107-115.
  • Sızmaz, Ö., Çalık, A., & Bundur, A. (2021). In vitro fermentation characteristics of camelina meal comparison with soybean meal. Livestock Studies, 61(1), 9-13.
  • Sizmaz, O., Calik, A., Sizmaz, S., Yildiz, G. (2016). A comparison of camelina meal and soybean meal degradation during incubation with rumen fluid as tested in vitro. Ank. Univ. Vet. Fak. Derg., 63, 157–161.
  • Steppa, R., Cieślak, A., Szumacher-Strabel, M., Bielińska-Nowak, S., Bryszak, M., Stanisz, M., Szkudelska, K. (2017). Blood Serum Metabolic Profile and Fatty Acid Composition İn Sheep Fed Concentrates With Camelina sativa Cake And Distillers Dried Grains With Solubles. Small Ruminant Research, 156, 20-26.
  • Ülgen, H. (2019). Türkiye’de yetiştirilen ketencik bitkisinin [Camelina sativa (l.) crantz] antioksidan, antimikrobiyal, antifungal, antibiyofilm özelliklerinin ve tohum morfolojisinin araştırılması. (Publication No. 556931) [Master's thesis, Bartın University]. acikerisim.bartin.edu.tr. https://acikerisim.bartin.edu.tr/handle/11772/2014?show=full, Erişim Tarihi: 17 February 2024.
  • Veljković, V. B., Kostić, M. D., & Stamenković, O. S. (2022). Camelina seed harvesting, storing, pretreating, and processing to recover oil: A review. Industrial Crops and Products, 178, 114539.
  • Xue, J., Grift, T. E., & Hansen, A. C. (2011). Effect of biodiesel on engine performances and emissions. Renewable and Sustainable energy reviews, 15(2), 1098-1116.
  • Zanetti, F., Alberghini, B., Marjanović Jeromela, A., Grahovac, N., Rajković, D., Kiprovski, B., & Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agron. Sustain. Dev. 41(2), 1-18. https://doi.org/10.1007/s13593-020-00663-y
There are 46 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology (Other)
Journal Section Reviews
Authors

Mikail Yeniçeri 0000-0003-1698-6911

Ayşe Gül Filik 0000-0001-7498-328X

Esra Şişman 0009-0007-3321-9577

Publication Date June 30, 2024
Submission Date April 9, 2024
Acceptance Date June 22, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Yeniçeri, M., Filik, A. G., & Şişman, E. (2024). Use of Camelina (Camelina sativa) in Poultry and Ruminant Feeds, Production of Biodiesel and Use as an Alternative Fuel to Petroleum. Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(1), 1-11.