Poly I:C-Induced TLR3 Activation on Oxidative Stress Levels in PC-3 (Hormone-Insensitive) and LNCaP (Hormone-Sensitive) as Prostate Cancer Cells
Year 2022,
Volume: 8 Issue: 1, 18 - 24, 21.03.2022
Asuman Deveci Özkan
,
Burcu Yüksel
Abstract
Objective: We aimed to determine the role of Poly I:C-induced TLR3 activation on oxidative stress in two different prostate cancer cells [PC-3 (hormone insensitive) and LNCaP (hormone-sensitive)] for the first time. For this purpose, lipid peroxidation (MDA), hydrogen peroxide (H2O2) and proline amounts and superoxide dismutase (SOD) enzyme activity were examined.
Methods: The optimal concentration and time required for receptor stimulation with Poly I:C cells were determined by WST-1 analysis. Spectrophotometric methods determined biochemical parameters.
Results: The less cytotoxic concentration of 5 µM of Poly I:C on PC-3 and LNCaP cells was determined. A significant increase was observed in LNCaP cells in SOD activities after 6 and 24 hours. A significant increase in PC-3 and LNCaP cells' MDA levels was determined over 6 hours, while a significant decrease was observed in Poly I:C LNCaP after 24 hours. A significant increase in H2O2 concentration was detected in LNCaP cells, but a significant decrease was observed in PC-3 after 6 and 24 hours. The proline level showed a significant increase in LNCaP over 24 hours but not in the proline level in PC-3 cells after 6 and 24 hours.
Conclusion: The MDA, H2O2 and SOD activity levels were found to be significantly higher in hormone-sensitive LNCaP cells, while no significant changes were found in PC-3 cells treated with Poly I:C. Results were significantly different at the level of p<0.05 and p<0.001.
Thanks
The authors thank Dr. Ozlem Aksoy from the Department of Biology at Kocaeli University for supporting our experiments.
References
- Tamassia N, Le Moigne V, Rossato M, et al. Activation of an immunoregulatory and antiviral gene expression program in Poly (I:C)-transfected human neutrophils. J Immunol. 2008;181(9):6563-6573.
https://doi.org/10.4049/jimmunol.181.9.6563
- Wesch D, Beetz S, Oberg HH, Marget M, Krengel K, Kabelitz D. Direct costimulatory effect of TLR3 ligand poly(I:C) on human gamma delta T lymphocytes. J Immunol. 2006;176(3):1348-1354.
https://doi.org/10.4049/jimmunol.176.3.1348
- Matijevic T, Pavelic J. The dual role of TLR3 in the metastatic cell line. Clin Exp Metastasis. 2011;28(7):701-712 https://doi.org/10.1007/s10585-011-9402-z
- Alkurdi L, Girard F, Vanbervliet B, et al. Release of c-FLIP brake selectively sensitizes human cancer cells to TLR3-mediated apoptosis. Cell Death Dis. 2018;9(9):874. Published 2018 Aug 29. https://doi.org/10.1038/s41419-018-0850-0
- Bonnin M, Fares N, Testoni B, et al. Toll-like receptor 3 downregulation is an escape mechanism from apoptosis during hepatocarcinogenesis [published correction appears in J Hepatol. 2020 Mar;72(3):594]. J Hepatol. 2019;71(4):763-772.
https://doi.org/10.1016/j.jhep.2019.05.031
- Bianchi F, Alexiadis S, Camisaschi C, et al. TLR3 Expression Induces Apoptosis in Human Non-Small-Cell Lung Cancer. Int J Mol Sci. 2020;21(4):1440. https://doi.org/10.3390/ijms21041440
- Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5): 415-418. https://doi.org/10.1023/A:1009616228304
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. https://doi.org/10.3322/caac.21551
- Shukla S, Srivastava JK, Shankar E, et al. Oxidative Stress and Antioxidant Status in High-Risk Prostate Cancer Subjects. Diagnostics (Basel). 2020;10(3):126. https://doi.org/10.3390/diagnostics10030126
- Tan BL, Norhaizan ME. Oxidative Stress, Diet and Prostate Cancer. World J Men's Health. 2021;39(2):195-207. doi: 10.5534/wjmh.200014
- Kruk J, Aboul-Enein HY. Reactive Oxygen and Nitrogen Species in Carcinogenesis: Implications of Oxidative Stress on the Progression and Development of Several Cancer Types. Mini Rev Med Chem. 2017;17(11):904-919. https://doi.org/10.2174/1389557517666170228115324
- Cekic SD, Çetinkaya A, Avan AN, Apak R. Correlation of total antioxidant capacity with reactive oxygen species (ROS) consumption measured by oxidative conversion. J Agric Food Chem. 2013;61(22): 5260-70. https://doi.org/10.1021/jf3051297
- Cramer SL, Saha A, Liu J, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumour growth. Nat Med. 2017;23(1): 120-127. https://doi.org/10.1038/nm.4232
- Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85-95. https://doi.org/10.1038/nrc2981
- Lu JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840-860. https://doi.org/10.1111/j.1582-4934.2009.00897.x
- Litwin MS, Tan HJ. The Diagnosis and Treatment of Prostate Cancer: A Review. JAMA. 2017;317(24):2532-2542. doi:10.1001/jama.2017.7248
- Bradford MM. A rapid and sensitive method for quantitating microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276-287. https://doi.org/10.1016/0003-2697(71)90370-8
- Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by the thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358. https://doi.org/10.1016/0003-2697(79)90738-3
- Krantev A, Yordanova R, Janda T, Szalai G, Popova L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol. 2008;165(9):920-931. https://doi.org/10.1016/j.jplph.2006.11.014
- Liu J, Wang YS. Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress. Ecotoxicology. 2020;29(6):698-706. https://doi.org/10.1007/s10646-020-02198-0
- Jana S, Choudhuri MA. Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat Bot. 1981.11, 67-77. https://doi.org/10.1016/0304-3770(81)90047-4
- Ozkan AD, Sarihan M, Kaleli S. Evaluation of the Effects of Nobiletin on Toll-Like Receptor 3 Signaling Pathways in Prostate Cancer In Vitro. Nutr Cancer. 2021;73(7):1138-1144. https://doi.org/10.1080/01635581.2020.1841247
- Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001
- Li N, Oberley TD, Oberley LW, Zhong W. Overexpression of manganese superoxide dismutase in DU145 human prostate carcinoma cells has multiple effects on cell phenotype. Prostate. 1998;35: 221–33. https://doi.org/10.1002/(SICI)1097-0045(19980515)35:3<221::AID-PROS8>3.0.CO;2-J
- Li H, Kantoff PW, Giovannucci E, et al. Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinically significant prostate cancer. Cancer Res. 2005;65(6):2498-2504.
- Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39,:359-407. 10.1158/0008-5472.CAN-04-3535
- Korai A, Sugiura H, Yanagisawa S, et al. Oxidative stress enhances toll-like receptor 3 response to double-stranded RNA in airway epithelial cells. Am J Respir Cell Mol Biol. 2010;42(6):651-660. https://doi.org/10.1165/rcmb.2008-0345OC
- Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012;2012:137289. doi:10.5402/2012/137289
- Kokoszka JE, Coskun P, Esposito L, Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results in the age-related decline of mitochondrial function, culminating in increased apoptosis. Proc Natl Acad Sci. 2001;98:2278–83. https://doi.org/10.1073/pnas.051627098
- Van Remmen H, Ikeno Y, Hamilton M, et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate ageing. Physiol Genomics. 2003;16(1):29-37. Published 2003 Dec 16. https://doi.org/10.1152/physiolgenomics.00122.2003
- Arif M, Rashid A, Majeed A, Qaiser F, Razak S. Evaluation of correlation between expression of P53 and Malondialdehyde levels in prostate cancer patients. J Pak Med Assoc. 2018;68(9):1373-1377.
- Skrzydlewska E, Stankiewicz A, Sulkowska M, Sulkowski S, Kasacka I. Antioxidant status and lipid peroxidation in colorectal cancer. J Toxicol Environ Health A. 2001;64(3):213-222. https://doi.org/10.1080/15287390152543690
- Young O, Crotty T, O'Connell R, O'Sullivan J, Curran AJ. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia. Head Neck. 2010;32(6):750-756. https://doi.org/10.1002/hed.21247
- Juric-Sekhar G, Zarkovic K, Waeg G, Cipak A, Zarkovic N. Distribution of 4-hydroxynonenal-protein conjugates as a marker of lipid peroxidation and parameter of malignancy in astrocytic and ependymal tumours of the brain. Tumori. 2009;95(6):762-768. https://doi.org/10.1177/030089160909500620
- Xiao D, Herman-Antosiewicz A, Antosiewicz J, et al. Diallyl trisulfide- induced G2-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyper- phosphorylation of Cdc25C. Oncogene 2005;24:6256–68. https://doi.org/10.1038/sj.onc.1208759
- Savitsky PA, Finkel T. Redox regulation of Cdc25C. J Biol Chem. 2002;277(23):20535-20540. https://doi.org/10.1074/jbc.M201589200
- Phang JM, Liu W, Hancock CN, Fischer JW. Proline metabolism and cancer: emerging links to glutamine and collagen. Curr Opin Clin Nutr Metab Care. 2015;18(1):71-77. 10.1097/MCO.0000000000000121
- Phang JM. Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxid Redox Signal. 2019;30(4):635-649. https://doi.org/10.1089/ars.2017.7350
- Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 2015;3(1):1. https://doi.org/10.1186/s40170-015-0128-2
- Olivares O, Vasseur S. Metabolic rewiring of pancreatic ductal adenocarcinoma: New routes to follow within the maze. Int J Cancer. 2016;138(4):787-796. https://doi.org/10.1002/ijc.29501
- Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23(1):27-47. https://doi.org/10.1016/j.cmet.2015.12.006
- Yüksel B , Deveci Özkan A . The Role of Citrus Nobiletin on Oxidative Stress Levels and Superoxide Dismutase Activities in Metastatic Castration-Resistant Prostate Cancer. Comm. J. Biol. 2021; 5(1): 84-89. https://doi.org/10.31594/commagene.895415
Poly I:C'nin İndüklediği TLR3 Aktivasyonunun Prostat Kanseri Hücreleri Olan PC-3 (Hormona Duyarsız) ve LNCaP'ın (Hormona Duyarlı) Oksidatif Stres Düzeyine Etkileri
Year 2022,
Volume: 8 Issue: 1, 18 - 24, 21.03.2022
Asuman Deveci Özkan
,
Burcu Yüksel
Abstract
Amaç: Poly I:C ile indüklenen TLR3 aktivasyonunun iki farklı prostat kanseri hücresinde [PC-3 (hormona duyarsız) ve LNCaP (hormona duyarlı)] oksidatif stres üzerindeki rolünü ilk kez belirlemeyi amaçladık. Bu amaçla lipid peroksidasyonu (MDA), hidrojen peroksit (H2O2) ve prolin miktarlarına, süperoksit dismutaz (SOD) enzim aktivitesine bakılmıştır.
Yöntem: Reseptör uyarımı için gerekli olan ve hücre canlılığını destekleyen optimal Poly I:C doz ve süresi WST-1 analizi ile belirlendi. Biyokimyasal parametrelere spektrofotometrik yöntemler ile tayin edildi.
Bulgular: Poly I:C'nin PC-3 ve LNCaP hücreleri üzerinde daha az sitotoksik konsantrasyonunu olarak 5 µM belirlendi. SOD aktivitelerininde LNCaP hücrelerinde önemli bir artış 6 ve 24 saat sonra gözlenmedi. 6 saat boyunca PC-3 ve LNCaP hücrelerinin MDA seviyelerinde önemli bir artış belirlenirken, 24 saat sonra Poly I:C LNCaP hücrelerinde önemli bir düşüş gözlemlendi. LNCaP hücrelerininde H2O2 konsantrasyonunda önemli artış tespit edildi. Buna karşın 6 ve 24 saatlik Poly I:C uygulamalarından sonra PC-3 hücrelerinde H2O2 konsantrasyonunda önemli bir düşüş gözlendi. Prolin seviyesi LNCaP hücrelerinde 24 saat boyunca önemli bir artış gösterdi ancak PC-3 hücrelerinde hem 6 hem de 24 saat sonra prolin seviyesinde değişiklik olmadı.
Sonuç: Hormona duyarlı LNCaP hücrelerinde MDA, H2O2 ve SOD aktivite düzeyleri anlamlı olarak yüksek bulunurken Poly I:C ile tedavi edilen metastatik ve hormona duyarsız PC-3 hücrelerinde önemli bir değişiklik bulunmamıştır. İstatiksel veriler kontrol grubuyla karşılaştırıldığında p<0,05 ve p<0,001 düzeyinde anlamlı olarak farklıdır.
References
- Tamassia N, Le Moigne V, Rossato M, et al. Activation of an immunoregulatory and antiviral gene expression program in Poly (I:C)-transfected human neutrophils. J Immunol. 2008;181(9):6563-6573.
https://doi.org/10.4049/jimmunol.181.9.6563
- Wesch D, Beetz S, Oberg HH, Marget M, Krengel K, Kabelitz D. Direct costimulatory effect of TLR3 ligand poly(I:C) on human gamma delta T lymphocytes. J Immunol. 2006;176(3):1348-1354.
https://doi.org/10.4049/jimmunol.176.3.1348
- Matijevic T, Pavelic J. The dual role of TLR3 in the metastatic cell line. Clin Exp Metastasis. 2011;28(7):701-712 https://doi.org/10.1007/s10585-011-9402-z
- Alkurdi L, Girard F, Vanbervliet B, et al. Release of c-FLIP brake selectively sensitizes human cancer cells to TLR3-mediated apoptosis. Cell Death Dis. 2018;9(9):874. Published 2018 Aug 29. https://doi.org/10.1038/s41419-018-0850-0
- Bonnin M, Fares N, Testoni B, et al. Toll-like receptor 3 downregulation is an escape mechanism from apoptosis during hepatocarcinogenesis [published correction appears in J Hepatol. 2020 Mar;72(3):594]. J Hepatol. 2019;71(4):763-772.
https://doi.org/10.1016/j.jhep.2019.05.031
- Bianchi F, Alexiadis S, Camisaschi C, et al. TLR3 Expression Induces Apoptosis in Human Non-Small-Cell Lung Cancer. Int J Mol Sci. 2020;21(4):1440. https://doi.org/10.3390/ijms21041440
- Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5): 415-418. https://doi.org/10.1023/A:1009616228304
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. https://doi.org/10.3322/caac.21551
- Shukla S, Srivastava JK, Shankar E, et al. Oxidative Stress and Antioxidant Status in High-Risk Prostate Cancer Subjects. Diagnostics (Basel). 2020;10(3):126. https://doi.org/10.3390/diagnostics10030126
- Tan BL, Norhaizan ME. Oxidative Stress, Diet and Prostate Cancer. World J Men's Health. 2021;39(2):195-207. doi: 10.5534/wjmh.200014
- Kruk J, Aboul-Enein HY. Reactive Oxygen and Nitrogen Species in Carcinogenesis: Implications of Oxidative Stress on the Progression and Development of Several Cancer Types. Mini Rev Med Chem. 2017;17(11):904-919. https://doi.org/10.2174/1389557517666170228115324
- Cekic SD, Çetinkaya A, Avan AN, Apak R. Correlation of total antioxidant capacity with reactive oxygen species (ROS) consumption measured by oxidative conversion. J Agric Food Chem. 2013;61(22): 5260-70. https://doi.org/10.1021/jf3051297
- Cramer SL, Saha A, Liu J, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumour growth. Nat Med. 2017;23(1): 120-127. https://doi.org/10.1038/nm.4232
- Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85-95. https://doi.org/10.1038/nrc2981
- Lu JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840-860. https://doi.org/10.1111/j.1582-4934.2009.00897.x
- Litwin MS, Tan HJ. The Diagnosis and Treatment of Prostate Cancer: A Review. JAMA. 2017;317(24):2532-2542. doi:10.1001/jama.2017.7248
- Bradford MM. A rapid and sensitive method for quantitating microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276-287. https://doi.org/10.1016/0003-2697(71)90370-8
- Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by the thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358. https://doi.org/10.1016/0003-2697(79)90738-3
- Krantev A, Yordanova R, Janda T, Szalai G, Popova L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol. 2008;165(9):920-931. https://doi.org/10.1016/j.jplph.2006.11.014
- Liu J, Wang YS. Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress. Ecotoxicology. 2020;29(6):698-706. https://doi.org/10.1007/s10646-020-02198-0
- Jana S, Choudhuri MA. Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat Bot. 1981.11, 67-77. https://doi.org/10.1016/0304-3770(81)90047-4
- Ozkan AD, Sarihan M, Kaleli S. Evaluation of the Effects of Nobiletin on Toll-Like Receptor 3 Signaling Pathways in Prostate Cancer In Vitro. Nutr Cancer. 2021;73(7):1138-1144. https://doi.org/10.1080/01635581.2020.1841247
- Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001
- Li N, Oberley TD, Oberley LW, Zhong W. Overexpression of manganese superoxide dismutase in DU145 human prostate carcinoma cells has multiple effects on cell phenotype. Prostate. 1998;35: 221–33. https://doi.org/10.1002/(SICI)1097-0045(19980515)35:3<221::AID-PROS8>3.0.CO;2-J
- Li H, Kantoff PW, Giovannucci E, et al. Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinically significant prostate cancer. Cancer Res. 2005;65(6):2498-2504.
- Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39,:359-407. 10.1158/0008-5472.CAN-04-3535
- Korai A, Sugiura H, Yanagisawa S, et al. Oxidative stress enhances toll-like receptor 3 response to double-stranded RNA in airway epithelial cells. Am J Respir Cell Mol Biol. 2010;42(6):651-660. https://doi.org/10.1165/rcmb.2008-0345OC
- Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012;2012:137289. doi:10.5402/2012/137289
- Kokoszka JE, Coskun P, Esposito L, Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results in the age-related decline of mitochondrial function, culminating in increased apoptosis. Proc Natl Acad Sci. 2001;98:2278–83. https://doi.org/10.1073/pnas.051627098
- Van Remmen H, Ikeno Y, Hamilton M, et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate ageing. Physiol Genomics. 2003;16(1):29-37. Published 2003 Dec 16. https://doi.org/10.1152/physiolgenomics.00122.2003
- Arif M, Rashid A, Majeed A, Qaiser F, Razak S. Evaluation of correlation between expression of P53 and Malondialdehyde levels in prostate cancer patients. J Pak Med Assoc. 2018;68(9):1373-1377.
- Skrzydlewska E, Stankiewicz A, Sulkowska M, Sulkowski S, Kasacka I. Antioxidant status and lipid peroxidation in colorectal cancer. J Toxicol Environ Health A. 2001;64(3):213-222. https://doi.org/10.1080/15287390152543690
- Young O, Crotty T, O'Connell R, O'Sullivan J, Curran AJ. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia. Head Neck. 2010;32(6):750-756. https://doi.org/10.1002/hed.21247
- Juric-Sekhar G, Zarkovic K, Waeg G, Cipak A, Zarkovic N. Distribution of 4-hydroxynonenal-protein conjugates as a marker of lipid peroxidation and parameter of malignancy in astrocytic and ependymal tumours of the brain. Tumori. 2009;95(6):762-768. https://doi.org/10.1177/030089160909500620
- Xiao D, Herman-Antosiewicz A, Antosiewicz J, et al. Diallyl trisulfide- induced G2-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyper- phosphorylation of Cdc25C. Oncogene 2005;24:6256–68. https://doi.org/10.1038/sj.onc.1208759
- Savitsky PA, Finkel T. Redox regulation of Cdc25C. J Biol Chem. 2002;277(23):20535-20540. https://doi.org/10.1074/jbc.M201589200
- Phang JM, Liu W, Hancock CN, Fischer JW. Proline metabolism and cancer: emerging links to glutamine and collagen. Curr Opin Clin Nutr Metab Care. 2015;18(1):71-77. 10.1097/MCO.0000000000000121
- Phang JM. Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxid Redox Signal. 2019;30(4):635-649. https://doi.org/10.1089/ars.2017.7350
- Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 2015;3(1):1. https://doi.org/10.1186/s40170-015-0128-2
- Olivares O, Vasseur S. Metabolic rewiring of pancreatic ductal adenocarcinoma: New routes to follow within the maze. Int J Cancer. 2016;138(4):787-796. https://doi.org/10.1002/ijc.29501
- Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23(1):27-47. https://doi.org/10.1016/j.cmet.2015.12.006
- Yüksel B , Deveci Özkan A . The Role of Citrus Nobiletin on Oxidative Stress Levels and Superoxide Dismutase Activities in Metastatic Castration-Resistant Prostate Cancer. Comm. J. Biol. 2021; 5(1): 84-89. https://doi.org/10.31594/commagene.895415