Review
BibTex RIS Cite

Scaffolding Biomaterials in Regenerative Endodontics

Year 2020, Volume: 22 Issue: 2, 281 - 287, 31.08.2020

Abstract

In tissue engineering; physiological and functional restoration of tissue lost due to cancer, trauma or diseases is targeted. The concept of regeneration with a multidisciplinary approach includes stem cells, scaffolds and growth factors. For successful treatments, artificial extracellular matrices (scaffolds) that support tissue formation during the organization and vascularization of stem cells are needed. Scaffolding design is critically important for tissue engineering. Tissue engineering has also shown promising results in the field of dentistry. Research data showed that smaller sizes of dental tissue can be produced instead of the whole crown of the tooth. In regenerative endodontic treatments, natural and fabricated scaffolds are used. The aim of this review is to define the types of scaffolding used in regenerative treatments and to evaluate the current literature study results.

References

  • 1. Baumotte K, Bombana AC, Cai S. Microbiologic endodontic status of young traumatized tooth. Dent Traumatol. 2011;27(6):438-41.
  • 2. Diogenes A, Henry MA, Teixeira FB, Hargreaves KM. An update on clinical regenerative endodontics. Endod Top. 2013;28:2-23.
  • 3. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endodont. 2007;33:377-90.
  • 4. Diogenes A, Simon S. Law AS. Regenerative endodontics. Pathways of the Pulp. 11th ed. Canada. 2016:447-473.
  • 5. Ma PX. Scaffolds for tissue fabrication. Materials today. 2004;7:30-40.
  • 6. Chiu YC, Fang HY, Hsu TT, Lin CY, Shie MY. The characteristics of mineral trioxide aggregate/polycaprolactone 3-dimensional scaffold with osteogenesis properties for tissue regeneration. J Endodont. 2017;43:923-9.
  • 7. Sakai V, Zhang Z, Dong Z, Neiva K, Machado M, Shi S et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010;89:791-6.
  • 8. Burdick JA, Mauck RL. Biomaterials for tissue engineering applications: a review of the past and future trends. Springer Science & Business Media. 2010.
  • 9. Falkeborg M, Cheong L-Z, Gianfico C, Sztukiel KM, Kristensen K, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem. 2014;164:185-94.
  • 10. Yudiati E, Isnansetyo A. Characterizing the Three Different Alginate Type of Sargassum siliquosum. Indonesian Journal of Marine Sciences/Ilmu Kelautan. 2017;22(1).
  • 11. Mi FL, Sung HW, Shyu SS. Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohyd Polym. 2002;48:61-72.
  • 12. Klöck G, Pfeffermann A, Ryser C, Gröhn P, Kuttler B, Hahn HJ et al. Biocompatibility of mannuronic acid-rich alginates. Biomaterials. 1997;18:707-13.
  • 13. Devillard R, Rémy M, Kalisky J, Bourget JM, Kérourédan O, Siadous R et al. In vitro assessment of a collagen/alginate composite scaffold for regenerative endodontics. Int Endod J. 2017;50:48-57. 14. Ehrenfest DD, Sammartino G, Shibli JA, Wang HL, Zou DR, Bernard JP. Guidelines for the publication of articles related to platelet concentrates (Platelet-Rich Plasma-PRP, or Platelet-Rich Fibrin-PRF): the international classification of the POSEIDO. Poseido J. 2013;1:17-28.
  • 15. Hartshorne J, Gluckman H. A comprehensive clinical review of Platelet Rich Fibrin (PRF) and its role in promoting tissue healing and regeneration in dentistry. Part II: preparation, optimization, handling and application, benefits and limitations of PRF. Int Dent. 2016;6:34-48
  • 16. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40:679-89.
  • 17. Rodella LF, Favero G, Boninsegna R, Buffoli B, Labanca M, Scari G et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction. Microsc Res Techniq. 2011;74:772-7.
  • 18. Tunalı M, Özdemir H, Küçükodacı Z, Akman S, Fıratlı E. In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate. Brit J Oral Max Surg. 2013;51:438-43.
  • 19. Bakhtiar H, Esmaeili S, Tabatabayi SF, Ellini MR, Nekoofar MH, Dummer PM.. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: a case series. J Endodont. 2017;43:401-8.
  • 20. Hong S, Chen W, Jiang B. A Comparative Evaluation of Concentrated Growth Factor and Platelet-rich Fibrin on the Proliferation, Migration, and Differentiation of Human Stem Cells of the Apical Papilla. J Endodont. 2018;44:977-83.
  • 21. Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K. Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res A. 1987;21:741-71.
  • 22. Aravamudhan A, Ramos DM, Nip J, Harmon MD, James R, et al. Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2013;9:719-31.
  • 23. Yamauchi N, Yamauchi S, Nagaoka H, Duggan D, Zhong S, Lee SM et al. Tissue engineering strategies for immature teeth with apical periodontitis. J Endodont. 2011; 37:390-7.
  • 24. Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endodont. 2008;34:421-6.
  • 25. Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young E, Badylak SF. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue engineering. 2006;12:2949-55.
  • 26. Hiraoka Y, Kimura Y, Ueda H, Tabata Y. Fabrication and biocompatibility of collagen sponge reinforced with poly (glycolic acid) fiber. Tissue engineering. 2003;9:1101-12.
  • 27. Jiang X, Liu H, Peng C. Clinical and radiographic assessment of the efficacy of a collagen membrane in regenerative endodontics: a randomized, controlled clinical trial. J Endodont. 2017;43:1465-71.
  • 28. Dornish M, Kaplan D, Skaugrud Ø. Standards and guidelines for biopolymers in tissue‐engineered medical products. Ann Ny Acad Sci. 2001;944:388-97.
  • 29. Gathani KM, Raghavendra SS. Scaffolds in regenerative endodontics: a review. Dent Res J. 2016;13:379-86.
  • 30. Muzzarelli RA. Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohyd Polym. 1993;20:7-16.
  • 31. Kheirallah M, Almeshaly H. Simvastatin, dosage and delivery system for supporting bone regeneration, an update review. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology. 2016;28:205-9.
  • 32. Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis: Current modalities, conflicts and future directions. J Control Release. 2015;215:12-24.
  • 33. Soares DG, Anovazzi G, Bordini EAF, Zuta UO, Leite MLAS, Basso FG et al. Biological Analysis of Simvastatin-releasing Chitosan Scaffold as a Cell-free System for Pulp-dentin Regeneration. J Endodont. 2018;44:971-6. e1.
  • 34. Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y et al. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B. 2010;92:120-8.
  • 35. Tan L, Wang J, Yin S, Zhu W, Zhou G, Cao Y et al. Regeneration of dentin–pulp-like tissue using an injectable tissue engineering technique. Rsc Advances. 2015;5:59723-37.
  • 36. Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY et al. Biomaterial selection for tooth regeneration. Tissue Engineering Part B: Reviews. 2011;17:373-88.
  • 37. Chrepa V, Austah O, Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (restylane) as injectable scaffold for dental pulp regeneration: an in vitro evaluation. J Endodont. 2017;43:257-62.
  • 38. Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the bioactive properties of the dentin-pulp complex in regenerative endodontics. J Endodont. 2016; 42:47-56.
  • 39. Urist MR, Dowell TA, Hay PH, Startes BS. Inductive substrates for bone formation. Clin Orthop Relat R. 1968;59:59-96.
  • 40. Galler K, Widbiller M, Buchalla W, Eidt A, Hiller KA, Hoffer PC et al. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J. 2016;49:581-90.
  • 41. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1-13.
  • 42. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675-83.
  • 43. Song J, Takimoto K, Jeon M, Vadakekalam J, Ruparel NB, Diogenes A. Decellularized human dental pulp as a scaffold for regenerative endodontics. J Dent Res. 2017;96:640-6.
  • 44. Chen G, Chen J, Yang B, Li L, Luo X, Zhang X et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials. 2015;52:56-70.
  • 45. Song J, Takimoto K, Jeon M, Vadakekalam J, Ruparel N, Diogenes A. Decellularized human dental pulp as a scaffold for regenerative endodontics. J Dent Res. 2017; 96:640-6.
  • 46. Matoug‐Elwerfelli M, Duggal M, Nazzal H, Esteves F, Raïf E. A biocompatible decellularized pulp scaffold for regenerative endodontics. Int Endod J. 2018;51:663-73.

REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ

Year 2020, Volume: 22 Issue: 2, 281 - 287, 31.08.2020

Abstract

Doku mühendisliğiyle; kanser, travma ya da hastalıklar nedeniyle kaybolan dokunun fizyolojik ve fonksiyonel restorasyonu hedeflenir. Rejenerasyon kavramı multidisipliner bir yaklaşımla; kök hücreler, iskele ve büyüme faktörlerini içermektedir. Tedavilerin daha başarılı olabilmesi için kök hücrelerinin organizasyonu ve vaskülarizasyonu sırasında doku oluşumunu destekleyen geçici ekstrasellüler matrikslere (iskeleler) ihtiyaç vardır. İskele tasarımı, doku mühendisliği için kritik öneme sahiptir. Doku mühendisliğiyle, diş hekimliği alanında da umut vaat edici sonuçlara ulaşılmıştır. Araştırma verileri; dişin tüm kronu yerine daha küçük boyutlarda diş dokusunun üretilebildiğini göstermiştir. Rejeneratif endodontik tedavilerde, doğal ve doğal olmayan (fabrikasyon) iskeleler kullanılır. Bu derlemenin amacı, rejeneratif tedavilerde kullanılan iskele çeşitlerinin tanımlanması ve güncel literatür çalışma sonuçlarının değerlendirilmesidir.

References

  • 1. Baumotte K, Bombana AC, Cai S. Microbiologic endodontic status of young traumatized tooth. Dent Traumatol. 2011;27(6):438-41.
  • 2. Diogenes A, Henry MA, Teixeira FB, Hargreaves KM. An update on clinical regenerative endodontics. Endod Top. 2013;28:2-23.
  • 3. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endodont. 2007;33:377-90.
  • 4. Diogenes A, Simon S. Law AS. Regenerative endodontics. Pathways of the Pulp. 11th ed. Canada. 2016:447-473.
  • 5. Ma PX. Scaffolds for tissue fabrication. Materials today. 2004;7:30-40.
  • 6. Chiu YC, Fang HY, Hsu TT, Lin CY, Shie MY. The characteristics of mineral trioxide aggregate/polycaprolactone 3-dimensional scaffold with osteogenesis properties for tissue regeneration. J Endodont. 2017;43:923-9.
  • 7. Sakai V, Zhang Z, Dong Z, Neiva K, Machado M, Shi S et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010;89:791-6.
  • 8. Burdick JA, Mauck RL. Biomaterials for tissue engineering applications: a review of the past and future trends. Springer Science & Business Media. 2010.
  • 9. Falkeborg M, Cheong L-Z, Gianfico C, Sztukiel KM, Kristensen K, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem. 2014;164:185-94.
  • 10. Yudiati E, Isnansetyo A. Characterizing the Three Different Alginate Type of Sargassum siliquosum. Indonesian Journal of Marine Sciences/Ilmu Kelautan. 2017;22(1).
  • 11. Mi FL, Sung HW, Shyu SS. Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohyd Polym. 2002;48:61-72.
  • 12. Klöck G, Pfeffermann A, Ryser C, Gröhn P, Kuttler B, Hahn HJ et al. Biocompatibility of mannuronic acid-rich alginates. Biomaterials. 1997;18:707-13.
  • 13. Devillard R, Rémy M, Kalisky J, Bourget JM, Kérourédan O, Siadous R et al. In vitro assessment of a collagen/alginate composite scaffold for regenerative endodontics. Int Endod J. 2017;50:48-57. 14. Ehrenfest DD, Sammartino G, Shibli JA, Wang HL, Zou DR, Bernard JP. Guidelines for the publication of articles related to platelet concentrates (Platelet-Rich Plasma-PRP, or Platelet-Rich Fibrin-PRF): the international classification of the POSEIDO. Poseido J. 2013;1:17-28.
  • 15. Hartshorne J, Gluckman H. A comprehensive clinical review of Platelet Rich Fibrin (PRF) and its role in promoting tissue healing and regeneration in dentistry. Part II: preparation, optimization, handling and application, benefits and limitations of PRF. Int Dent. 2016;6:34-48
  • 16. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40:679-89.
  • 17. Rodella LF, Favero G, Boninsegna R, Buffoli B, Labanca M, Scari G et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction. Microsc Res Techniq. 2011;74:772-7.
  • 18. Tunalı M, Özdemir H, Küçükodacı Z, Akman S, Fıratlı E. In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate. Brit J Oral Max Surg. 2013;51:438-43.
  • 19. Bakhtiar H, Esmaeili S, Tabatabayi SF, Ellini MR, Nekoofar MH, Dummer PM.. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: a case series. J Endodont. 2017;43:401-8.
  • 20. Hong S, Chen W, Jiang B. A Comparative Evaluation of Concentrated Growth Factor and Platelet-rich Fibrin on the Proliferation, Migration, and Differentiation of Human Stem Cells of the Apical Papilla. J Endodont. 2018;44:977-83.
  • 21. Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K. Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res A. 1987;21:741-71.
  • 22. Aravamudhan A, Ramos DM, Nip J, Harmon MD, James R, et al. Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2013;9:719-31.
  • 23. Yamauchi N, Yamauchi S, Nagaoka H, Duggan D, Zhong S, Lee SM et al. Tissue engineering strategies for immature teeth with apical periodontitis. J Endodont. 2011; 37:390-7.
  • 24. Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endodont. 2008;34:421-6.
  • 25. Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young E, Badylak SF. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue engineering. 2006;12:2949-55.
  • 26. Hiraoka Y, Kimura Y, Ueda H, Tabata Y. Fabrication and biocompatibility of collagen sponge reinforced with poly (glycolic acid) fiber. Tissue engineering. 2003;9:1101-12.
  • 27. Jiang X, Liu H, Peng C. Clinical and radiographic assessment of the efficacy of a collagen membrane in regenerative endodontics: a randomized, controlled clinical trial. J Endodont. 2017;43:1465-71.
  • 28. Dornish M, Kaplan D, Skaugrud Ø. Standards and guidelines for biopolymers in tissue‐engineered medical products. Ann Ny Acad Sci. 2001;944:388-97.
  • 29. Gathani KM, Raghavendra SS. Scaffolds in regenerative endodontics: a review. Dent Res J. 2016;13:379-86.
  • 30. Muzzarelli RA. Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohyd Polym. 1993;20:7-16.
  • 31. Kheirallah M, Almeshaly H. Simvastatin, dosage and delivery system for supporting bone regeneration, an update review. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology. 2016;28:205-9.
  • 32. Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis: Current modalities, conflicts and future directions. J Control Release. 2015;215:12-24.
  • 33. Soares DG, Anovazzi G, Bordini EAF, Zuta UO, Leite MLAS, Basso FG et al. Biological Analysis of Simvastatin-releasing Chitosan Scaffold as a Cell-free System for Pulp-dentin Regeneration. J Endodont. 2018;44:971-6. e1.
  • 34. Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y et al. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B. 2010;92:120-8.
  • 35. Tan L, Wang J, Yin S, Zhu W, Zhou G, Cao Y et al. Regeneration of dentin–pulp-like tissue using an injectable tissue engineering technique. Rsc Advances. 2015;5:59723-37.
  • 36. Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY et al. Biomaterial selection for tooth regeneration. Tissue Engineering Part B: Reviews. 2011;17:373-88.
  • 37. Chrepa V, Austah O, Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (restylane) as injectable scaffold for dental pulp regeneration: an in vitro evaluation. J Endodont. 2017;43:257-62.
  • 38. Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the bioactive properties of the dentin-pulp complex in regenerative endodontics. J Endodont. 2016; 42:47-56.
  • 39. Urist MR, Dowell TA, Hay PH, Startes BS. Inductive substrates for bone formation. Clin Orthop Relat R. 1968;59:59-96.
  • 40. Galler K, Widbiller M, Buchalla W, Eidt A, Hiller KA, Hoffer PC et al. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J. 2016;49:581-90.
  • 41. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1-13.
  • 42. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675-83.
  • 43. Song J, Takimoto K, Jeon M, Vadakekalam J, Ruparel NB, Diogenes A. Decellularized human dental pulp as a scaffold for regenerative endodontics. J Dent Res. 2017;96:640-6.
  • 44. Chen G, Chen J, Yang B, Li L, Luo X, Zhang X et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials. 2015;52:56-70.
  • 45. Song J, Takimoto K, Jeon M, Vadakekalam J, Ruparel N, Diogenes A. Decellularized human dental pulp as a scaffold for regenerative endodontics. J Dent Res. 2017; 96:640-6.
  • 46. Matoug‐Elwerfelli M, Duggal M, Nazzal H, Esteves F, Raïf E. A biocompatible decellularized pulp scaffold for regenerative endodontics. Int Endod J. 2018;51:663-73.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review
Authors

Dilek Hançerlioğulları 0000-0002-0404-1200

Ali Erdemir 0000-0003-1140-3887

Publication Date August 31, 2020
Submission Date February 15, 2020
Published in Issue Year 2020 Volume: 22 Issue: 2

Cite

APA Hançerlioğulları, D., & Erdemir, A. (2020). REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, 22(2), 281-287.
AMA Hançerlioğulları D, Erdemir A. REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ. Kırıkkale Uni Med J. August 2020;22(2):281-287.
Chicago Hançerlioğulları, Dilek, and Ali Erdemir. “REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ”. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi 22, no. 2 (August 2020): 281-87.
EndNote Hançerlioğulları D, Erdemir A (August 1, 2020) REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi 22 2 281–287.
IEEE D. Hançerlioğulları and A. Erdemir, “REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ”, Kırıkkale Uni Med J, vol. 22, no. 2, pp. 281–287, 2020.
ISNAD Hançerlioğulları, Dilek - Erdemir, Ali. “REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ”. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi 22/2 (August 2020), 281-287.
JAMA Hançerlioğulları D, Erdemir A. REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ. Kırıkkale Uni Med J. 2020;22:281–287.
MLA Hançerlioğulları, Dilek and Ali Erdemir. “REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ”. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, vol. 22, no. 2, 2020, pp. 281-7.
Vancouver Hançerlioğulları D, Erdemir A. REJENERATİF ENDODONTİDE İSKELE BİYOMATERYALLERİ. Kırıkkale Uni Med J. 2020;22(2):281-7.

Bu Dergi, Kırıkkale Üniversitesi Tıp Fakültesi Yayınıdır.