Review
BibTex RIS Cite

Intracellular Pharmacokinetic Properties of Antibiotics

Year 2020, Volume: 22 Issue: 3, 470 - 477, 31.12.2020
https://doi.org/10.24938/kutfd.790656

Abstract

Pathogenic bacteria that have the ability to enter and multiply in the cell, cause a large number of diseases. In order to obtain efficient results from the antibiotics used in the treatment of these diseases, intracellular pharmacokinetic values should be taken into consideration as well as plasma pharmacokinetic parameters. Thus, drugs used in treatment of diseases caused by intracellular pathogens have to accumulate intracellulary in adequate concentration and time while maintaining their antibacterial activity. However, intracellular pH affects the activity of the antibiotics. If the intracellular pH is below 6, some antibiotics retain their antibacterial activity, while others lose it. In this review, the aim is to give information about the intracellular pharmacokinetic properties of antibiotics used in the treatment of diseases caused by intracellular pathogenic bacteria.

References

  • 1. Estes L. Review of pharmacokinetics and pharmacodynamics of antimicrobial agents. Mayo Clin Proc. 1998;73(11):1114-22.
  • 2. Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Eur Rev Med Pharmacol Sci. 2002;6(2-3):33-44.
  • 3. Wang Y, Liu J, Zhang J, Wang L, Chan J, Wang H et al. A cell-based pharmacokinetics assay for evaluating tubulin-binding drugs. Int J Med Sci. 2014;11(5):479-87.
  • 4. Van Bambeke F, Barcia-Macay M, Lemaria S, Tulkens PM. Cellular pharmacodynamics and pharmacokinetics of antibiotics: Current views and perspectives. Curr Opin Drug Discov Devel. 2006;9(2):218-30.
  • 5. Pea F. Intracellular pharmacokinetics of antibacterials and their clinical implications. Clin Pharmacokinet. 2018;57(2):177-89.
  • 6. Kaya S. Farmakokinetik. In: Kaya S, ed. Veteriner Farmakoloji. 6. baskı, 1. Cilt. Ankara. Medisan, 2014:21-84.
  • 7. Castillo JRE. Tetracyclines. In: Giguére S, Prescott JF, Dowling PM, eds. Antimicrobial Therapy in Veterinary Medicine. 5th ed. Lowa. Wiley Blackwell, 2013:257-68.
  • 8. D’Avolio A, Pensi D, Baietto L, Perri GD. Therapeutic drug monitoring of intracellular anti-infective agents. J Pharm Biomed Anal. 2014;101:183-93.
  • 9. Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol. 2017;174(1):2225-36.
  • 10. Labro MT. Cellular accumulation of macrolide antibiotics. In: Schonfeld W, Kirst HA eds. Intracellular bioactivity, Macrolide Antibiotics. 1st ed. Basel: Springer. 2002:37-52.
  • 11. Maurin M, Raoult D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother. 2001;45(11):2977-86.
  • 12. Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am. 2003;17(3):615-34.
  • 13. Hof H. Antibiotic Treatment of Infections with Intracellular Bacteria. In: Paradise LJ, Friedman H, Bendinelli M; eds. Opportunistic Intracellular Bacteria and Immunity. New York. Plenum Press, 1999:281-93. 14. Steinberg TH. Cellular transport of drugs. Clin Infect Dis. 1994;19(5):916-21.
  • 15. Leggett JE. Aminoglycosides. In: Cohen J, Powderly WG, Opal SM, eds. Infectious Diseases. 4th ed. China. Elsevier, 2017:1233-8.
  • 16. Papich MG, Riviere JE. Aminoglycoside Antibiotics. In: Riviere JE, Papich MG, eds. Veterinary Pharmacology and Therapeutics. 10th ed. Hoboken. John Wiley and Sons, 2018:877-902.
  • 17. Jiang M, Karasawa T, Steyger PS. Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci. 2017;11:308.
  • 18. Nagai J, Takano M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem Pharmacol. 2014;90(4):331-7.
  • 19. Mingeot-Leclercq M-P, Tulkens PM. Aminoglycosides: Nephrotoxicity. Antimicrob Agents Chemother. 1999;43(5):1003-12.
  • 20. O’Sullivan ME, Perez A, Lin R, Sajjadi A, Ricci AJ, Cheng AG. Towards the prevention of aminoglycoside-related hearing loss. Front Cell Neurosci. 2017;11:325.
  • 21. Tulkens PM, Troue A. The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rat fibroblasts. Biochem Pharmacol. 1978;27(4):415-24.
  • 22. Van Bambeke F, Michot J-M, Tulkens PM. Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. J Antimicrob Chemother. 2003;51(5):1067-77.
  • 23. Craig WA. Optimizing aminoglycoside use. Crit Care Clin. 2011;27(1):107-21.
  • 24. Drusano G, Labro M-T, Cars O, Mendes P, Shah P, Sörgel F, Weber W. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin Microbiol Infect. 1998;4(2):27-41.
  • 25. Martinez M, McDermott P, Walker R. Pharmacology of the fluoroquinolones: A perspective for the use in domestic animals. Vet J. 2006;172(1):10-28.
  • 26. Papich MG. Fluoroquinolone Antimicrobial Drugs. In: Riviere JE, Papich MG, eds. Veterinary Pharmacology and Therapeutics. 10th ed. Hoboken. John Wiley and Sons, 2018:953-87.
  • 27. Pechère JC. Quinolones in intracellular infections. Drugs. 1993;45(3): 29-36.
  • 28. Pocidalo JJ. Use of fluoroquinolones for intracellular pathogens. Rev Infect Dis. 1989;11(5):979-84.
  • 29. Spížek J, Řezanka T. Lincomycin, clindamycin and their applications. Appl Microbiol Biotechnol. 2004;64(4):455-64.
  • 30. Giguère S. Lincosamides, pleuromutilins, and streptogramins. In: Giguére S, Prescott JF, Dowling PM, eds. Antimicrobial Therapy in Veterinary Medicine. 5th ed. Lowa. Wiley Blackwell, 2013:199-210.
  • 31. Easmon CS, Crane JP. Cellular uptake of clindamycin and lincomycin. Br J Exp Pathol. 1984;65(6):725-30.
  • 32. Hand WL, King-Thompson NL. Membrane transport of clindamycin in alveolar macrophages. Antimicrob Agents Chemother. 1982;21(2):241-7.
  • 33. Prokesch RC, Hand WL. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982;21(3):373-80.
  • 34. Klempner MS, Styrt B. Clindamycin uptake by human neutrophils. J Infect Dis. 1981;144(5):472-9.
  • 35. Borgers S, Hellebrekers P, Leenen LPH, Koenderman L, Hietbrink F. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics. 2019;8(2):54.
  • 36. Togami K Chono S, Morimoto K. Subcellular distribution of azithromycin and clarithromycin in rat alveolar macrophages (NR8383) in vitro. Biol Pharm Bull. 2013;36(9):1494-9. 37. Villa P, Sassella D, Corada M, Bartošek I. Toxicity, uptake, and subcellular distribution in rat hepatocytes of roxithromycin, a new semisynthetic macrolide, and erythromycin base. Antimicrob Agents Chemother. 1988;32(10):1541-6.
  • 38. Amsden GW. Advanced-generation macrolides: tissue-directed antibiotics. Int J Antimicrob Agents. 2001;18(1):11-5.
  • 39. Papich MG. Chloramphenicaol and Derivatives, Macrolides, Lincosamides, and Miscellaneous Antimicrobials. In: Riviere JE, Papich MG, eds. Veterinary Pharmacology and Therapeutics. 10th ed. Hoboken. John Wiley and Sons. 2018a:902-52.
  • 40. Bush K, Bradford PA. β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6:a025247.
  • 41. Holten KB, Onusko EM. Appropriate prescribing of oral beta-lactam antibiotics. Am Fam Physician. 2000;62(3):611-20.
  • 42. Neuhauser MM, Danziger LH. β-Lactam Antibiotics. In: Piscitelli SC, Rodvold KA, eds. Drug Interactions in Infectious Diseases. 2nd ed. Totowa: Humana Press. 2005:255-87.
  • 43. Osthoff M, Siegemund M, Balestra G, Abdul-Aziz MH, Roberts JA. Prolonged administration of β-lactam antibiotics - a comprehensive review and critical appraisal. Swiss Med Wkly. 2016;146:w14368.
  • 44. Carryn S, Van Bambeke F, Mingeot-Leclercq M-P, Tulkens PM. Comparative intracellular (THP-1 Macrophage) and extracellular activities of β-lactams, azithromycin, gentamicin, and fluoroquinolones against Listeria monocytogenes at clinically relevant concentrations. Antimicrob Agents Chemother. 2002;46(7):2095-103.
  • 45. Walters JD. Characterization of minocycline transport by human neutrophils. J Periodontol. 2006;77(12):1964-8.
  • 46. Butler MS, Hansford KA, Blaskovich MAT, Halai R, Cooper MA. Glycopeptide antibiotics: Back to the future. J Antibiotics. 2014;67(9):631–44.
  • 47. Barcia-Macay M, Seral C, Mingeot-Leclercq M-P, Tulkens PM, Van Bambeke F. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother. 2006;50(3):841-51.
  • 48. Brade KD, Rybak JM, Rybak MJ. Oritavancin: a new lipoglycopeptide antibiotic in the treatment of gram-positive infections. Infect Dis Ther. 2016;5(1):1-15.
  • 49. Damodaran SE, Madhan S. Telavancin: a novel lipoglycopeptide antibiotic. J Pharmacol Pharmacother. 2011;2(2):135-7.
  • 50. Barcia-Macay M, Mouaden F, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F. Cellular pharmacokinetics of telavancin, a novel lipoglycopeptide antibiotic, and analysis of lysosomal changes in cultured eukaryotic cells (J774 mouse macrophages and rat embryonic fibroblasts). J Antimicrob Chemother. 2008;61:1288-94.
  • 51. Van Bambeke F, Carryn S, Seral C, Chanteux H, Tyteca D, Mingeot-Leclercq MP et al. Cellular pharmacokinetics and pharmacodynamics of the glycopeptide antibiotic oritavancin (LY333328) in a model of J774 mouse macrophages. Antimicrob Agents Chemother. 2004;48(8):2853-60.
  • 52. Ahmed MU, Velkov T, Zhou QT, Fulcher AJ, Callagahan J, Zhou F et al. Intracellular localization of polymyxins in human alveolar epithelial cells. J Antimicrob Chemother. 2019;74(1):48-57.
  • 53. Yun B, Azad MAK, Nowell CJ, Nation RL, Thompson PE, Roberts KD et al. Cellular uptake and localization of polymyxins in renal tubular cells using rationally designed fluorescent probes. Antimicrob Agents Chemother. 2015;59(12):7489-96.
  • 54. Gai Z, Samodelov SL, Kullak-Ublick GA, Visentin M. Molecular mechanisms of colistin-induced nephrotoxicity. Molecules. 2019;24(3):653.
  • 55. Pascual A, Ballesta S, García I, Perea EJ. Uptake and intracellular activity of linezolid in human phagocytes and nonphagocytic cells, Antimicrob Agents Chemother. 2002;46(12):4013-5.
  • 56. Lemaire S, Tulkens PM, Van Bambeke F. Cellular pharmacokinetics of the novel biaryloxazolidinone radezolid in phagocytic cells: studies with macrophages and polymorphonuclear neutrophils. Antimicrob Agents Chemother. 2010;54(6):2540-8.
  • 57. Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327-41.
  • 58. Dowling PM. Miscellaneous Antimicrobials: Ionophores, Nitrofurans, Nitroimidazoles, Rifamycins, and Others. In: Giguére S, Prescott JF, Dowling PM, eds. Antimicrobial Therapy in Veterinary Medicine. 5th ed, Lowa: Wiley Blackwell. 2013:315-32.
  • 59. Pascual A, Tsukayama D, Kavarik J, Gekker G, Peterson P. Uptake and activity of rifapentine in human peritoneal macrophages and polymorphonuclear leukocytes. Eur J Clin Microbiol. 1987;6(2):152-7.

ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ

Year 2020, Volume: 22 Issue: 3, 470 - 477, 31.12.2020
https://doi.org/10.24938/kutfd.790656

Abstract

Hücre içine girebilme ve çoğalabilme kabiliyetine sahip olan patojen bakteriler; çok sayıda hastalığa neden olmaktadır. Bu hastalıkların tedavisinde kullanılan antibiyotiklerden verimli sonuçlar elde edilebilmesi için, plazma farmakokinetik parametreleri yanında hücre içi farmakokinetik değerler de dikkate alınmalıdır. Çünkü hücre içi bu patojen bakterilerin neden olduğu hastalıkların tedavisinde kullanılacak ilacın, uygun hücre içi bölümde birikmesi, antibakteriyel özelliğini muhafaza etmesi, hücre içinde yeterli konsantrasyon ve sürede bulunması gerekmektedir. Ancak hücre içi pH değeri, antibiyotiklerin etkinliğini etkilemektedir. Hücre içi pH değeri 6’nın altındaki değerlerde olursa; bazı antibiyotikler antibakteriyel etkinliğini korurken, bazıları ise kaybetmektedir. Bu derlemede, hücre içi patojen bakterilerin neden olduğu hastalıkların tedavisinde kullanılan antibiyotiklerin, hücre içi farmakokinetik özellikleri hakkında bilgi verilmesi amaçlanmıştır.

References

  • 1. Estes L. Review of pharmacokinetics and pharmacodynamics of antimicrobial agents. Mayo Clin Proc. 1998;73(11):1114-22.
  • 2. Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Eur Rev Med Pharmacol Sci. 2002;6(2-3):33-44.
  • 3. Wang Y, Liu J, Zhang J, Wang L, Chan J, Wang H et al. A cell-based pharmacokinetics assay for evaluating tubulin-binding drugs. Int J Med Sci. 2014;11(5):479-87.
  • 4. Van Bambeke F, Barcia-Macay M, Lemaria S, Tulkens PM. Cellular pharmacodynamics and pharmacokinetics of antibiotics: Current views and perspectives. Curr Opin Drug Discov Devel. 2006;9(2):218-30.
  • 5. Pea F. Intracellular pharmacokinetics of antibacterials and their clinical implications. Clin Pharmacokinet. 2018;57(2):177-89.
  • 6. Kaya S. Farmakokinetik. In: Kaya S, ed. Veteriner Farmakoloji. 6. baskı, 1. Cilt. Ankara. Medisan, 2014:21-84.
  • 7. Castillo JRE. Tetracyclines. In: Giguére S, Prescott JF, Dowling PM, eds. Antimicrobial Therapy in Veterinary Medicine. 5th ed. Lowa. Wiley Blackwell, 2013:257-68.
  • 8. D’Avolio A, Pensi D, Baietto L, Perri GD. Therapeutic drug monitoring of intracellular anti-infective agents. J Pharm Biomed Anal. 2014;101:183-93.
  • 9. Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol. 2017;174(1):2225-36.
  • 10. Labro MT. Cellular accumulation of macrolide antibiotics. In: Schonfeld W, Kirst HA eds. Intracellular bioactivity, Macrolide Antibiotics. 1st ed. Basel: Springer. 2002:37-52.
  • 11. Maurin M, Raoult D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother. 2001;45(11):2977-86.
  • 12. Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am. 2003;17(3):615-34.
  • 13. Hof H. Antibiotic Treatment of Infections with Intracellular Bacteria. In: Paradise LJ, Friedman H, Bendinelli M; eds. Opportunistic Intracellular Bacteria and Immunity. New York. Plenum Press, 1999:281-93. 14. Steinberg TH. Cellular transport of drugs. Clin Infect Dis. 1994;19(5):916-21.
  • 15. Leggett JE. Aminoglycosides. In: Cohen J, Powderly WG, Opal SM, eds. Infectious Diseases. 4th ed. China. Elsevier, 2017:1233-8.
  • 16. Papich MG, Riviere JE. Aminoglycoside Antibiotics. In: Riviere JE, Papich MG, eds. Veterinary Pharmacology and Therapeutics. 10th ed. Hoboken. John Wiley and Sons, 2018:877-902.
  • 17. Jiang M, Karasawa T, Steyger PS. Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci. 2017;11:308.
  • 18. Nagai J, Takano M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem Pharmacol. 2014;90(4):331-7.
  • 19. Mingeot-Leclercq M-P, Tulkens PM. Aminoglycosides: Nephrotoxicity. Antimicrob Agents Chemother. 1999;43(5):1003-12.
  • 20. O’Sullivan ME, Perez A, Lin R, Sajjadi A, Ricci AJ, Cheng AG. Towards the prevention of aminoglycoside-related hearing loss. Front Cell Neurosci. 2017;11:325.
  • 21. Tulkens PM, Troue A. The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rat fibroblasts. Biochem Pharmacol. 1978;27(4):415-24.
  • 22. Van Bambeke F, Michot J-M, Tulkens PM. Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. J Antimicrob Chemother. 2003;51(5):1067-77.
  • 23. Craig WA. Optimizing aminoglycoside use. Crit Care Clin. 2011;27(1):107-21.
  • 24. Drusano G, Labro M-T, Cars O, Mendes P, Shah P, Sörgel F, Weber W. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin Microbiol Infect. 1998;4(2):27-41.
  • 25. Martinez M, McDermott P, Walker R. Pharmacology of the fluoroquinolones: A perspective for the use in domestic animals. Vet J. 2006;172(1):10-28.
  • 26. Papich MG. Fluoroquinolone Antimicrobial Drugs. In: Riviere JE, Papich MG, eds. Veterinary Pharmacology and Therapeutics. 10th ed. Hoboken. John Wiley and Sons, 2018:953-87.
  • 27. Pechère JC. Quinolones in intracellular infections. Drugs. 1993;45(3): 29-36.
  • 28. Pocidalo JJ. Use of fluoroquinolones for intracellular pathogens. Rev Infect Dis. 1989;11(5):979-84.
  • 29. Spížek J, Řezanka T. Lincomycin, clindamycin and their applications. Appl Microbiol Biotechnol. 2004;64(4):455-64.
  • 30. Giguère S. Lincosamides, pleuromutilins, and streptogramins. In: Giguére S, Prescott JF, Dowling PM, eds. Antimicrobial Therapy in Veterinary Medicine. 5th ed. Lowa. Wiley Blackwell, 2013:199-210.
  • 31. Easmon CS, Crane JP. Cellular uptake of clindamycin and lincomycin. Br J Exp Pathol. 1984;65(6):725-30.
  • 32. Hand WL, King-Thompson NL. Membrane transport of clindamycin in alveolar macrophages. Antimicrob Agents Chemother. 1982;21(2):241-7.
  • 33. Prokesch RC, Hand WL. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982;21(3):373-80.
  • 34. Klempner MS, Styrt B. Clindamycin uptake by human neutrophils. J Infect Dis. 1981;144(5):472-9.
  • 35. Borgers S, Hellebrekers P, Leenen LPH, Koenderman L, Hietbrink F. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics. 2019;8(2):54.
  • 36. Togami K Chono S, Morimoto K. Subcellular distribution of azithromycin and clarithromycin in rat alveolar macrophages (NR8383) in vitro. Biol Pharm Bull. 2013;36(9):1494-9. 37. Villa P, Sassella D, Corada M, Bartošek I. Toxicity, uptake, and subcellular distribution in rat hepatocytes of roxithromycin, a new semisynthetic macrolide, and erythromycin base. Antimicrob Agents Chemother. 1988;32(10):1541-6.
  • 38. Amsden GW. Advanced-generation macrolides: tissue-directed antibiotics. Int J Antimicrob Agents. 2001;18(1):11-5.
  • 39. Papich MG. Chloramphenicaol and Derivatives, Macrolides, Lincosamides, and Miscellaneous Antimicrobials. In: Riviere JE, Papich MG, eds. Veterinary Pharmacology and Therapeutics. 10th ed. Hoboken. John Wiley and Sons. 2018a:902-52.
  • 40. Bush K, Bradford PA. β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6:a025247.
  • 41. Holten KB, Onusko EM. Appropriate prescribing of oral beta-lactam antibiotics. Am Fam Physician. 2000;62(3):611-20.
  • 42. Neuhauser MM, Danziger LH. β-Lactam Antibiotics. In: Piscitelli SC, Rodvold KA, eds. Drug Interactions in Infectious Diseases. 2nd ed. Totowa: Humana Press. 2005:255-87.
  • 43. Osthoff M, Siegemund M, Balestra G, Abdul-Aziz MH, Roberts JA. Prolonged administration of β-lactam antibiotics - a comprehensive review and critical appraisal. Swiss Med Wkly. 2016;146:w14368.
  • 44. Carryn S, Van Bambeke F, Mingeot-Leclercq M-P, Tulkens PM. Comparative intracellular (THP-1 Macrophage) and extracellular activities of β-lactams, azithromycin, gentamicin, and fluoroquinolones against Listeria monocytogenes at clinically relevant concentrations. Antimicrob Agents Chemother. 2002;46(7):2095-103.
  • 45. Walters JD. Characterization of minocycline transport by human neutrophils. J Periodontol. 2006;77(12):1964-8.
  • 46. Butler MS, Hansford KA, Blaskovich MAT, Halai R, Cooper MA. Glycopeptide antibiotics: Back to the future. J Antibiotics. 2014;67(9):631–44.
  • 47. Barcia-Macay M, Seral C, Mingeot-Leclercq M-P, Tulkens PM, Van Bambeke F. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother. 2006;50(3):841-51.
  • 48. Brade KD, Rybak JM, Rybak MJ. Oritavancin: a new lipoglycopeptide antibiotic in the treatment of gram-positive infections. Infect Dis Ther. 2016;5(1):1-15.
  • 49. Damodaran SE, Madhan S. Telavancin: a novel lipoglycopeptide antibiotic. J Pharmacol Pharmacother. 2011;2(2):135-7.
  • 50. Barcia-Macay M, Mouaden F, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F. Cellular pharmacokinetics of telavancin, a novel lipoglycopeptide antibiotic, and analysis of lysosomal changes in cultured eukaryotic cells (J774 mouse macrophages and rat embryonic fibroblasts). J Antimicrob Chemother. 2008;61:1288-94.
  • 51. Van Bambeke F, Carryn S, Seral C, Chanteux H, Tyteca D, Mingeot-Leclercq MP et al. Cellular pharmacokinetics and pharmacodynamics of the glycopeptide antibiotic oritavancin (LY333328) in a model of J774 mouse macrophages. Antimicrob Agents Chemother. 2004;48(8):2853-60.
  • 52. Ahmed MU, Velkov T, Zhou QT, Fulcher AJ, Callagahan J, Zhou F et al. Intracellular localization of polymyxins in human alveolar epithelial cells. J Antimicrob Chemother. 2019;74(1):48-57.
  • 53. Yun B, Azad MAK, Nowell CJ, Nation RL, Thompson PE, Roberts KD et al. Cellular uptake and localization of polymyxins in renal tubular cells using rationally designed fluorescent probes. Antimicrob Agents Chemother. 2015;59(12):7489-96.
  • 54. Gai Z, Samodelov SL, Kullak-Ublick GA, Visentin M. Molecular mechanisms of colistin-induced nephrotoxicity. Molecules. 2019;24(3):653.
  • 55. Pascual A, Ballesta S, García I, Perea EJ. Uptake and intracellular activity of linezolid in human phagocytes and nonphagocytic cells, Antimicrob Agents Chemother. 2002;46(12):4013-5.
  • 56. Lemaire S, Tulkens PM, Van Bambeke F. Cellular pharmacokinetics of the novel biaryloxazolidinone radezolid in phagocytic cells: studies with macrophages and polymorphonuclear neutrophils. Antimicrob Agents Chemother. 2010;54(6):2540-8.
  • 57. Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327-41.
  • 58. Dowling PM. Miscellaneous Antimicrobials: Ionophores, Nitrofurans, Nitroimidazoles, Rifamycins, and Others. In: Giguére S, Prescott JF, Dowling PM, eds. Antimicrobial Therapy in Veterinary Medicine. 5th ed, Lowa: Wiley Blackwell. 2013:315-32.
  • 59. Pascual A, Tsukayama D, Kavarik J, Gekker G, Peterson P. Uptake and activity of rifapentine in human peritoneal macrophages and polymorphonuclear leukocytes. Eur J Clin Microbiol. 1987;6(2):152-7.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review
Authors

Yaşar Şahin 0000-0001-5936-4210

Ebru Yıldırım 0000-0002-6289-0729

Publication Date December 31, 2020
Submission Date September 4, 2020
Published in Issue Year 2020 Volume: 22 Issue: 3

Cite

APA Şahin, Y., & Yıldırım, E. (2020). ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, 22(3), 470-477. https://doi.org/10.24938/kutfd.790656
AMA Şahin Y, Yıldırım E. ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ. Kırıkkale Uni Med J. December 2020;22(3):470-477. doi:10.24938/kutfd.790656
Chicago Şahin, Yaşar, and Ebru Yıldırım. “ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ”. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi 22, no. 3 (December 2020): 470-77. https://doi.org/10.24938/kutfd.790656.
EndNote Şahin Y, Yıldırım E (December 1, 2020) ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi 22 3 470–477.
IEEE Y. Şahin and E. Yıldırım, “ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ”, Kırıkkale Uni Med J, vol. 22, no. 3, pp. 470–477, 2020, doi: 10.24938/kutfd.790656.
ISNAD Şahin, Yaşar - Yıldırım, Ebru. “ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ”. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi 22/3 (December 2020), 470-477. https://doi.org/10.24938/kutfd.790656.
JAMA Şahin Y, Yıldırım E. ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ. Kırıkkale Uni Med J. 2020;22:470–477.
MLA Şahin, Yaşar and Ebru Yıldırım. “ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ”. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, vol. 22, no. 3, 2020, pp. 470-7, doi:10.24938/kutfd.790656.
Vancouver Şahin Y, Yıldırım E. ANTİBİYOTİKLERİN HÜCRE İÇİ FARMAKOKİNETİK ÖZELLİKLERİ. Kırıkkale Uni Med J. 2020;22(3):470-7.

Bu Dergi, Kırıkkale Üniversitesi Tıp Fakültesi Yayınıdır.