Research Article
BibTex RIS Cite

Caspases Activities in TNF-α Applied HepG2 Hepatocellular Carcinoma Cell

Year 2020, Volume: 13 Issue: 1, 86 - 91, 31.03.2020
https://doi.org/10.30607/kvj.642112

Abstract

Purpose: Tumor necrosis factor (TNF) plays a key role in cellular events such as cell survival, proliferation, differentiation, inflammation, immunity, and apoptosis. Although named Tumor necrosis factor for its tumor cytotoxicity, TNF has been implicated in a wide spectrum of other diseases. The aim of the present study is to determine the effects of TNF-α on caspase 3, 9, and 1 enzyme activities in HepG2 cells. Materials and methods: Hepatocellular carcinoma cell line HepG2 was used and cells were cultured in the absence (control) or presence of TNF-α for 24 h. The effect of TNF-α on caspase 3, caspase 9, and caspase 1 enzyme activities in hepatocarcinoma cells were examined in TNF-α treated and control cells using colorimetric assay kits. Results: There were significant increases in caspases 1 and 3 levels in TNF-α treated HepG2 cells compare to control cells. Conclusions: TNF-α is a pro-inflammatory cytokine, secreted by inflammatory cells. This mechanism may be involved in inflammation-associated carcinogenesis. TNF could act both as tumor promoter, and cancer killer. Presented findings suggest that caspases-dependent cell death occurs in TNF-α applied HepG2 cells. 

References

  • Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003; 3(9): 745–56.
  • Ahmed MI, Salahy EE, Fayed ST, El-Hefnawy NG, Khalifa A. Human papillomavirus infection among Egyptian females with cervical carcinoma: relationship to spontaneous apoptosis and TNFalpha. Clin Biochem. 2001; 34(6): 491–8.
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001; 357(9255): 539-45.
  • Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000; 85(9): 3338-42.
  • Chen K, Zhao H, Hu Z, Wang LE, Zhang W, Sturgis EM, Wei Q. CASP3 polymorphisms and risk of squamous cell carcinoma of the head and neck. Clin Cancer Res 2008; 14: 6343–6349.
  • Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001; 9: 113–114.
  • Dace DS, Chen PW, Niederkorn JY. CD8+ T cells circumvent immune privilege in the eye and mediate intraocular tumor rejection by a TNF-alpha-dependent mechanism. J Immunol 2007; 178 (10): 6115–22.
  • Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004; 4(1): 11-22.
  • Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z, et al. The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia. Blood 2002; 100(4): 1215–9.
  • Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006; 8: 1812–1825
  • Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M. Role of tumor necrosis factoralpha and its receptors in human benign breast lesions and tumors (in situ and infiltrative). Cancer Sci 2006; 97(10): 1044–9.
  • Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M. Apoptosis and cancer: mutations within caspase genes. J Med Genet. 2009; 46(8): 497-510.
  • Green S, Dobrjansky A, Chiasson MA. Murine tumor necrosis-inducing factor: purification and effects on myelomonocytic leukemia cells. J Natl Cancer Inst 1982; 68(6): 997–1003.
  • Guegan C, Vila M, Teismann P, Chen C, Onteniente B, Li M, Friedlander RM, Przedborski S. Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol Cell Neurosci 2002; 20: 553–562.
  • Hosgood HD, Baris D, Zhang Y, Zhu Y, Zheng T, Yeager M, Welch R, Zahm S, Chanock S, Rothman N, et al. Caspase polymorphisms and genetic susceptibility to multiplemyeloma. Hematol Oncol 2008; 26: 148–151.
  • Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 2006; 124(4): 823–35.
  • Kelly JL, Novak AJ, Fredericksen ZS, Liebow M, Ansell SM, Dogan A, Wang AH, Witzig TE, Call TG, Kay NE, et al. Germline variation in apoptosis pathway genes and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers Prev. 2010; 19: 2847–2858.
  • Lan Q, Morton LM, Armstrong B, Hartge P, Menashe I, Zheng T, Purdue MP, Cerhan JR, Zhang Y, Grulich A, et al. Genetic variation in caspase genes and risk of non-Hodgkin lymphoma: A pooled analysis of 3 population- based case-control studies. 2009; Blood 114: 264–267.
  • Lan Q, Zheng T, Chanock S, Zhang Y, Shen M, Wang SS, Berndt SI, Zahm SH, Holford TR, Leaderer B, et al. Genetic variants in caspase genes and susceptibility to non-Hodgkin lymphoma. Carcinogenesis. 2007; 28: 823–827.
  • Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007; 117(5): 1175-83.
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008; 454(7203): 436-44.
  • Mantovani A, Pierotti MA. Cancer and inflammation: a complex relationship. Cancer Lett. 2008; 267(2): 180-1.
  • Matthews N, Watkins JF. Tumour-necrosis factor from the rabbit. I. Mode of action, specificity and physicochemical properties. Br J Cancer. 1978; 38(2): 302–9.
  • Mauer J, Denson JL, Bruning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol, 2015; 36(2): 92-101.
  • McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013; 5(4).
  • McIlwain DW, Marloes Zoetemelk, Jason D. Myers, Marshe T. Edwards, Brandy M. Snider, and Travis J. Jerde, Coordinated Induction of Cell Survival Signaling in the Inflamed Microenvironment of the Prostate The Prostate 2016; 76: 722–734.
  • Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004; 90 (12): 2312–6.
  • Nakagawa J, Saio M, Tamakawa N, Suwa T, Frey AB, Nonaka K, et al. TNF expressed by tumorassociated macrophages, but not microglia, can eliminate glioma. Int J Oncol. 2007; 30(4): 803–11.
  • Nicholson DW, Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999; 6(11):1028-42.
  • Philchenkov A, Zavelevich M, Kroczak TJ, Los M. Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol. 2004;26(2):82-97.
  • Remco van Horssen, Timo L. M. ten Hagen, Alexander M. M. Eggermont, TNF-α in Cancer Treatment: Molecular Insights, Antitumor Effects, and Clinical Utility The Oncologist. 2006; 11: 397–408.
  • Soung YH, Lee JW, Kim SY, Park WS, Nam SW, Lee JY, Yoo NJ, Lee SH. Somatic mutations of CASP3 gene in human cancers. Hum Genet. 2004; 15: 112–115.Stone JH, Holbrook JT, Marriott MA, Tibbs AK, Sejismundo LP, Min YI, et al. Solid malignancies among patients in the Wegener's Granulomatosis Etanercept Trial. Arthritis Rheum. 2006; 54(5): 1608–18.
  • Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci. 2008; 105(2): 652–6.
  • Tselepis C, Perry I, Dawson C, Hardy R, Darnton SJ, McConkey C, et al. Tumour necrosis factoralpha in Barrett's oesophagus: a potential novel mechanism of action. Oncogene. 2002; 21(39): 6071–81.
  • Villeneuve J, Tremblay P, Vallieres L. Tumor necrosis factor reduces brain tumor growth by enhancing macrophage recruitment and microcyst formation. Cancer Res. 2005; 65(9): 3928–36. Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin. 2008 29(11): 1275–1288.
  • Xu HL, Xu WH, Cai Q, Feng M, Long J, ZhengW, Xiang YB, Shu XO. Polymorphisms and haplotypes in the caspase-3, caspase-7, and caspase-8 genes and risk for endometrial cancer: A population-based, case-control study in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2009; 18: 2114–2122.
  • Zhang B, Karrison T, Rowley DA, Schreiber H. IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest. 2008; 118(4): 1398-404.
  • Zhang WH, Wang X, Narayanan M, Zhang Y, Huo C, Reed JC, Friedlander RM. Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemiainduced neuronal cell death. Proc Natl Acad Sci. 2003; 100: 16012–16017.
  • Zhao X, Mohaupt M, Jiang J, Liu S, Li B, Qin Z. Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res. 2007; 67(9): 4443–50.
  • Zheng L, Wang W, Ni J, Mao X, Song D, Liu T, Wei J, Zhou H. Role of autophagy in tumor necrosis factor-α-induced apoptosis of osteoblast cells. J Investig Med. 2017; 65(6): 1014-1020.

TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri

Year 2020, Volume: 13 Issue: 1, 86 - 91, 31.03.2020
https://doi.org/10.30607/kvj.642112

Abstract

Amaç: Tümör nekroz faktörü (TNF), hücre sağkalımı, proliferasyon, farklılaşma, inflamasyon, bağışıklık ve apoptoz gibi hücresel olaylarda anahtar rol oynar. Tümör sitotoksisitesindeki etkisinden dolayı Tümör nekroz faktörü olarak adlandırılmasına rağmen, TNF geniş bir yelpazede birçok hastalıkla ilişkilendirilmiştir. Çalışmada, hepatoselüler karsinoma hücrelerinde TNF-α'nın kaspaz 1, 3 ve 9 enzim aktiviteleri üzerindeki etkilerini belirlemek amaçlanmıştır. Materyal ve metod: Çalışmada TNF-α uygulanmayan (kontrol) ve 24 saat boyunca TNF-α uygulanan hepatoselüler karsinoma hücre hattı HepG2 hücreleri kullanılmıştır. TNF-α'nın kaspaz 1, kaspaz 3 ve kaspaz 9 enzim aktiviteleri üzerindeki etkileri kolorimetrik olarak ticari kit ile gerçekleştirilmiştir. Bulgular: TNF-α uygulanan HepG2 hücrelerinde kaspaz 1 ve kaspaz 3 enzim aktivitelerinde kontrol grubuna göre anlamlı artış gözlenmiştir (p<0,05). Sonuç: TNF-α inflamatuar hücreler tarafından salınan pro-inflamatuvar bir sitokindir. Bu mekanizma, yangıya bağlı şekillenen karsinogenezde rol oynayabilir. TNF, hem tümör oluşumunu destekleyebilir hem de kanser hücrelerini öldürücü etki gösterebilir. Sunulan bulgular, TNF-α uygulanan HepG2 hücrelerinde kaspaz bağlımlı hücre ölümünün meydana geldiğini ortaya koymaktadır.

References

  • Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003; 3(9): 745–56.
  • Ahmed MI, Salahy EE, Fayed ST, El-Hefnawy NG, Khalifa A. Human papillomavirus infection among Egyptian females with cervical carcinoma: relationship to spontaneous apoptosis and TNFalpha. Clin Biochem. 2001; 34(6): 491–8.
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001; 357(9255): 539-45.
  • Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000; 85(9): 3338-42.
  • Chen K, Zhao H, Hu Z, Wang LE, Zhang W, Sturgis EM, Wei Q. CASP3 polymorphisms and risk of squamous cell carcinoma of the head and neck. Clin Cancer Res 2008; 14: 6343–6349.
  • Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001; 9: 113–114.
  • Dace DS, Chen PW, Niederkorn JY. CD8+ T cells circumvent immune privilege in the eye and mediate intraocular tumor rejection by a TNF-alpha-dependent mechanism. J Immunol 2007; 178 (10): 6115–22.
  • Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004; 4(1): 11-22.
  • Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z, et al. The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia. Blood 2002; 100(4): 1215–9.
  • Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006; 8: 1812–1825
  • Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M. Role of tumor necrosis factoralpha and its receptors in human benign breast lesions and tumors (in situ and infiltrative). Cancer Sci 2006; 97(10): 1044–9.
  • Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M. Apoptosis and cancer: mutations within caspase genes. J Med Genet. 2009; 46(8): 497-510.
  • Green S, Dobrjansky A, Chiasson MA. Murine tumor necrosis-inducing factor: purification and effects on myelomonocytic leukemia cells. J Natl Cancer Inst 1982; 68(6): 997–1003.
  • Guegan C, Vila M, Teismann P, Chen C, Onteniente B, Li M, Friedlander RM, Przedborski S. Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol Cell Neurosci 2002; 20: 553–562.
  • Hosgood HD, Baris D, Zhang Y, Zhu Y, Zheng T, Yeager M, Welch R, Zahm S, Chanock S, Rothman N, et al. Caspase polymorphisms and genetic susceptibility to multiplemyeloma. Hematol Oncol 2008; 26: 148–151.
  • Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 2006; 124(4): 823–35.
  • Kelly JL, Novak AJ, Fredericksen ZS, Liebow M, Ansell SM, Dogan A, Wang AH, Witzig TE, Call TG, Kay NE, et al. Germline variation in apoptosis pathway genes and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers Prev. 2010; 19: 2847–2858.
  • Lan Q, Morton LM, Armstrong B, Hartge P, Menashe I, Zheng T, Purdue MP, Cerhan JR, Zhang Y, Grulich A, et al. Genetic variation in caspase genes and risk of non-Hodgkin lymphoma: A pooled analysis of 3 population- based case-control studies. 2009; Blood 114: 264–267.
  • Lan Q, Zheng T, Chanock S, Zhang Y, Shen M, Wang SS, Berndt SI, Zahm SH, Holford TR, Leaderer B, et al. Genetic variants in caspase genes and susceptibility to non-Hodgkin lymphoma. Carcinogenesis. 2007; 28: 823–827.
  • Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007; 117(5): 1175-83.
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008; 454(7203): 436-44.
  • Mantovani A, Pierotti MA. Cancer and inflammation: a complex relationship. Cancer Lett. 2008; 267(2): 180-1.
  • Matthews N, Watkins JF. Tumour-necrosis factor from the rabbit. I. Mode of action, specificity and physicochemical properties. Br J Cancer. 1978; 38(2): 302–9.
  • Mauer J, Denson JL, Bruning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol, 2015; 36(2): 92-101.
  • McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013; 5(4).
  • McIlwain DW, Marloes Zoetemelk, Jason D. Myers, Marshe T. Edwards, Brandy M. Snider, and Travis J. Jerde, Coordinated Induction of Cell Survival Signaling in the Inflamed Microenvironment of the Prostate The Prostate 2016; 76: 722–734.
  • Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004; 90 (12): 2312–6.
  • Nakagawa J, Saio M, Tamakawa N, Suwa T, Frey AB, Nonaka K, et al. TNF expressed by tumorassociated macrophages, but not microglia, can eliminate glioma. Int J Oncol. 2007; 30(4): 803–11.
  • Nicholson DW, Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999; 6(11):1028-42.
  • Philchenkov A, Zavelevich M, Kroczak TJ, Los M. Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol. 2004;26(2):82-97.
  • Remco van Horssen, Timo L. M. ten Hagen, Alexander M. M. Eggermont, TNF-α in Cancer Treatment: Molecular Insights, Antitumor Effects, and Clinical Utility The Oncologist. 2006; 11: 397–408.
  • Soung YH, Lee JW, Kim SY, Park WS, Nam SW, Lee JY, Yoo NJ, Lee SH. Somatic mutations of CASP3 gene in human cancers. Hum Genet. 2004; 15: 112–115.Stone JH, Holbrook JT, Marriott MA, Tibbs AK, Sejismundo LP, Min YI, et al. Solid malignancies among patients in the Wegener's Granulomatosis Etanercept Trial. Arthritis Rheum. 2006; 54(5): 1608–18.
  • Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci. 2008; 105(2): 652–6.
  • Tselepis C, Perry I, Dawson C, Hardy R, Darnton SJ, McConkey C, et al. Tumour necrosis factoralpha in Barrett's oesophagus: a potential novel mechanism of action. Oncogene. 2002; 21(39): 6071–81.
  • Villeneuve J, Tremblay P, Vallieres L. Tumor necrosis factor reduces brain tumor growth by enhancing macrophage recruitment and microcyst formation. Cancer Res. 2005; 65(9): 3928–36. Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin. 2008 29(11): 1275–1288.
  • Xu HL, Xu WH, Cai Q, Feng M, Long J, ZhengW, Xiang YB, Shu XO. Polymorphisms and haplotypes in the caspase-3, caspase-7, and caspase-8 genes and risk for endometrial cancer: A population-based, case-control study in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2009; 18: 2114–2122.
  • Zhang B, Karrison T, Rowley DA, Schreiber H. IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest. 2008; 118(4): 1398-404.
  • Zhang WH, Wang X, Narayanan M, Zhang Y, Huo C, Reed JC, Friedlander RM. Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemiainduced neuronal cell death. Proc Natl Acad Sci. 2003; 100: 16012–16017.
  • Zhao X, Mohaupt M, Jiang J, Liu S, Li B, Qin Z. Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res. 2007; 67(9): 4443–50.
  • Zheng L, Wang W, Ni J, Mao X, Song D, Liu T, Wei J, Zhou H. Role of autophagy in tumor necrosis factor-α-induced apoptosis of osteoblast cells. J Investig Med. 2017; 65(6): 1014-1020.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section RESEARCH ARTICLE
Authors

Burcu Menekşe Balkan 0000-0002-0206-6455

Öğünç Meral 0000-0001-8813-4991

Görkem Kısmalı This is me 0000-0003-3414-4697

Deniz Turan This is me 0000-0003-3248-1032

Tevhide Sel 0000-0002-9753-779X

Publication Date March 31, 2020
Acceptance Date February 21, 2020
Published in Issue Year 2020 Volume: 13 Issue: 1

Cite

APA Balkan, B. M., Meral, Ö., Kısmalı, G., Turan, D., et al. (2020). TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri. Kocatepe Veterinary Journal, 13(1), 86-91. https://doi.org/10.30607/kvj.642112
AMA Balkan BM, Meral Ö, Kısmalı G, Turan D, Sel T. TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri. kvj. March 2020;13(1):86-91. doi:10.30607/kvj.642112
Chicago Balkan, Burcu Menekşe, Öğünç Meral, Görkem Kısmalı, Deniz Turan, and Tevhide Sel. “TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri”. Kocatepe Veterinary Journal 13, no. 1 (March 2020): 86-91. https://doi.org/10.30607/kvj.642112.
EndNote Balkan BM, Meral Ö, Kısmalı G, Turan D, Sel T (March 1, 2020) TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri. Kocatepe Veterinary Journal 13 1 86–91.
IEEE B. M. Balkan, Ö. Meral, G. Kısmalı, D. Turan, and T. Sel, “TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri”, kvj, vol. 13, no. 1, pp. 86–91, 2020, doi: 10.30607/kvj.642112.
ISNAD Balkan, Burcu Menekşe et al. “TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri”. Kocatepe Veterinary Journal 13/1 (March 2020), 86-91. https://doi.org/10.30607/kvj.642112.
JAMA Balkan BM, Meral Ö, Kısmalı G, Turan D, Sel T. TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri. kvj. 2020;13:86–91.
MLA Balkan, Burcu Menekşe et al. “TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri”. Kocatepe Veterinary Journal, vol. 13, no. 1, 2020, pp. 86-91, doi:10.30607/kvj.642112.
Vancouver Balkan BM, Meral Ö, Kısmalı G, Turan D, Sel T. TNF-α Uygulanan HepG2 Hepatoselüler Karsinoma Hücrelerinde Kaspaz Aktiviteleri. kvj. 2020;13(1):86-91.

13520    13521       13522   1352314104

14105         14106        14107       14108