Research Article
BibTex RIS Cite

Drosophila melanogaster Modelinde Imidakloprid ile İndüklenen DNA Hasarı ve Üreme Performansı Üzerine Taurinin Koruyucu Etkileri

Year 2020, Volume: 13 Issue: 2, 214 - 218, 30.06.2020
https://doi.org/10.30607/kvj.710779

Abstract

İmidakloprid, neonikotinoid grubu bir insektisid olup evcil hayvanlarda bit ve pire gibi zararlı böceklerin kontrolü için veteriner hekimlik alanında yaygın olarak kullanılmaktadır. İnsektisitlerin canlılarda toksik etki gösterdiği, oksidatif strese ve DNA hasarına neden olduğu bilinmektedir. Taurin birçok fizyolojik ve biyokimyasal olayda rol almakta ve biyolojik membranlarda stabilizasyonunu sağlayarak antioksidan etki göstermektedir. Bu çalışmada imidaklopridin DNA hasarı ve üreme performansına etkisi ve buna karşın taurinin olası koruyucu etkisi Drosophila melanogaster’lerde araştırıldı. İmidakloprid (0,6 µM) tek başına ve taurin (1, 2 ve 3 mM) ile birlikte besi yerlerine 20 gün boyunca ilave edildi. Çalışmanın sonuçları, imidakloprid uygulamasının gruplarda üreme performansını azalttığını ve DNA hasarında artış meydana getirdiğini, buna karşın taurin uygulaması ile bu etkilerin azaldığını gösterdi. Sonuç olarak Drosophila melanogaster’lerde imidaklopridin DNA ve üreme performansında yol açtığı olumsuz etkilerin taurin uygulaması ile engellendiği belirlendi.

References

  • Alam SS, Hafiz NA, Abd El-Rahim AH. Protective role of taurine against genotoxic damage in mice treated with methotrexate and tamoxfine. Environ. Toxicol. Pharmacol. 2011;31(1): 143–52.
  • Amjad A, Azam I, Sarwar MK, Malik MF, Sattar A. A review of imidacloprid toxicity in coccinellids. Arthropods. 2018;7(1): 1–10.
  • Bonner MR, Alavanja MCR. Pesticides, human health, and food security. Food Energy Secur. 2017;6(3): 89–93.
  • Charpentier G, Louat F, Bonmatin JM, Marchand PA, Vanier F, Locker D, Decoville M. Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model drosophila melanogaster. Environ. Sci. Technol. 2014;48(7): 4096–102.
  • Costa LG Toxic Effects of Pesticides. In: Klaassen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons. 2013. McGraw-Hill Education, New York.
  • Feng S, Kong Z, Wang X, Peng P, Zeng EY. Assessing the genotoxicity of imidacloprid and RH-5849 in human peripheral blood lymphocytes in vitro with comet assay and cytogenetic tests. Ecotoxicol. Environ. Saf. 2005;61(2): 239–46.
  • Feng S, Kong Z, Wang X, Zhao L, Peng P. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell. Chemosphere. 2004;56(5): 457–63.
  • Frantzios G, Paptsiki K, Sidiropoulou B, Lazaridis I, Theophilidis G, Mavragani-Tsipidou P. Evaluation of insecticidal and genotoxic effects of imidacloprid and acetochlor in Drosophila melanogaster. J. Appl. Entomol. 2008;132(7): 583–90.
  • İnce S, Acaröz U, Arslan-Acaröz D, Varol N, Gürler Z, Küçükkurt İ, Demirel HH, Eryavuz A. Sıçanlarda Akrilamid ile İndüklenen Oksidatif Strese Karşı Taurinin Koruyucu Etkisi. Kocatepe Vet. J.2018;11: 1–12.
  • Ince S, Arslan-Acaroz D, Demirel HH, Varol N, Ozyurek HA, Zemheri F, Kucukkurt I. Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats. Biomed. Pharmacother. 2017;96 (May): 263–8.
  • Kumar A, Verma A, Kumar A. Accidental human poisoning with a neonicotinoid insecticide, imidacloprid: A rare case report from rural India with a brief review of literature. Egypt. J. Forensic Sci. Forensic Medicine Authority; 2013;3(4): 123–6.
  • Lourenço R, Camilo ME. Taurine: A conditionally essential amino acid in humans? An overview in health and disease. Nutr. Hosp. 2002;17(6): 262–70.
  • Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics. 2018;210(2): 357–96.
  • Mukhopadhyay I, Chowdhuri DK, Bajpayee M, Dhawan A. Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline Comet assay. Mutagenesis. 2004;19(2): 85-90.
  • Olive PL, Banáth JP. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 2006;1(1): 23-29.
  • Pandey UB, Nichols CD. Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Barker EL, editor. Pharmacol. Rev. 2011;63(2): 411–36.
  • Prakash G, Hosetti B, Dhananjaya B. Protective effect of caffeine on Ethyl methanesulfonate-induced wing primordial cells of Drosophila melanogaster. Toxicol. Int. 2014;21(1): 96–100.
  • Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol. 2019;138(3): 343–62.
  • Soares JJ, Rodrigues DT, Gonçalves MB, Lemos MC, Gallarreta MS, Bianchini MC, Gayer MC, Puntel RL, Roehrs R, Denardin ELG. Paraquat exposure-induced Parkinson’s disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy. Biomed. Pharmacother. 2017;95(July): 245–51.
  • Türkez H, Geyikoğlu F. The Anti-Genotoxic Effect of Taurine on Aluminum Sulphate-Induced DNA Damage in Human Peripheral Lymphocytes. Eur. J. Biol. 2010;69(1): 25–32.
  • Uysal H, Agar G. Selenium protective activity against Aflatoxin B1 adverse affects on Drosophila melanogaster. Brazilian Arch. Biol. Technol. 2005;48(2): 227–33.
  • WHO. 2005. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. IPCS, Geneva 2004, Switzerland.
  • Yucel MS, Kayis T. Imidacloprid induced alterations in oxidative stress, biochemical, genotoxic, and immunotoxic biomarkers in non-mammalian model organism Galleria mellonella L. (Lepidoptera: Pyralidae). J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 2019;54(1): 27–34.
  • Zang Y, Zhong Y, Luo Y, Kong ZM. Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ. Pollut. 2000;108(2): 271–8.
  • Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C. Potential human exposures to neonicotinoid insecticides: A review. Environ. Pollut. 2018;236: 71–81.

Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila melanogaster Model

Year 2020, Volume: 13 Issue: 2, 214 - 218, 30.06.2020
https://doi.org/10.30607/kvj.710779

Abstract

Imidacloprid is a neonicotinoid group insecticide and is widely used in veterinary medicine for the control of pests such as lice and fleas in domestic animals. Insecticides are known that they induce toxic effects on living organism, causing oxidative stress and DNA damage. Taurine plays a role in many physiological and biochemical functions and provides an antioxidant effect by stabilization of biological membranes. This study investigated the effect of imidacloprid on DNA damage and reproductive performance and the possible protective effect of taurine in Drosophila melanogasters. Imidacloprid (0.6 µM) alone or in combination with taurine (1, 2 ve 3 mM) were given to broths for 20 days. The results of the study showed that imidacloprid application decreased reproductive performance and increased DNA damage in groups, whereas these effects decreased with taurine administration. In conclusion, it was determined that the adverse effects of imidacloprid regarding DNA and reproductive performance in Drosophila melanogasters were prevented by taurine application.

References

  • Alam SS, Hafiz NA, Abd El-Rahim AH. Protective role of taurine against genotoxic damage in mice treated with methotrexate and tamoxfine. Environ. Toxicol. Pharmacol. 2011;31(1): 143–52.
  • Amjad A, Azam I, Sarwar MK, Malik MF, Sattar A. A review of imidacloprid toxicity in coccinellids. Arthropods. 2018;7(1): 1–10.
  • Bonner MR, Alavanja MCR. Pesticides, human health, and food security. Food Energy Secur. 2017;6(3): 89–93.
  • Charpentier G, Louat F, Bonmatin JM, Marchand PA, Vanier F, Locker D, Decoville M. Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model drosophila melanogaster. Environ. Sci. Technol. 2014;48(7): 4096–102.
  • Costa LG Toxic Effects of Pesticides. In: Klaassen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons. 2013. McGraw-Hill Education, New York.
  • Feng S, Kong Z, Wang X, Peng P, Zeng EY. Assessing the genotoxicity of imidacloprid and RH-5849 in human peripheral blood lymphocytes in vitro with comet assay and cytogenetic tests. Ecotoxicol. Environ. Saf. 2005;61(2): 239–46.
  • Feng S, Kong Z, Wang X, Zhao L, Peng P. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell. Chemosphere. 2004;56(5): 457–63.
  • Frantzios G, Paptsiki K, Sidiropoulou B, Lazaridis I, Theophilidis G, Mavragani-Tsipidou P. Evaluation of insecticidal and genotoxic effects of imidacloprid and acetochlor in Drosophila melanogaster. J. Appl. Entomol. 2008;132(7): 583–90.
  • İnce S, Acaröz U, Arslan-Acaröz D, Varol N, Gürler Z, Küçükkurt İ, Demirel HH, Eryavuz A. Sıçanlarda Akrilamid ile İndüklenen Oksidatif Strese Karşı Taurinin Koruyucu Etkisi. Kocatepe Vet. J.2018;11: 1–12.
  • Ince S, Arslan-Acaroz D, Demirel HH, Varol N, Ozyurek HA, Zemheri F, Kucukkurt I. Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats. Biomed. Pharmacother. 2017;96 (May): 263–8.
  • Kumar A, Verma A, Kumar A. Accidental human poisoning with a neonicotinoid insecticide, imidacloprid: A rare case report from rural India with a brief review of literature. Egypt. J. Forensic Sci. Forensic Medicine Authority; 2013;3(4): 123–6.
  • Lourenço R, Camilo ME. Taurine: A conditionally essential amino acid in humans? An overview in health and disease. Nutr. Hosp. 2002;17(6): 262–70.
  • Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics. 2018;210(2): 357–96.
  • Mukhopadhyay I, Chowdhuri DK, Bajpayee M, Dhawan A. Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline Comet assay. Mutagenesis. 2004;19(2): 85-90.
  • Olive PL, Banáth JP. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 2006;1(1): 23-29.
  • Pandey UB, Nichols CD. Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Barker EL, editor. Pharmacol. Rev. 2011;63(2): 411–36.
  • Prakash G, Hosetti B, Dhananjaya B. Protective effect of caffeine on Ethyl methanesulfonate-induced wing primordial cells of Drosophila melanogaster. Toxicol. Int. 2014;21(1): 96–100.
  • Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol. 2019;138(3): 343–62.
  • Soares JJ, Rodrigues DT, Gonçalves MB, Lemos MC, Gallarreta MS, Bianchini MC, Gayer MC, Puntel RL, Roehrs R, Denardin ELG. Paraquat exposure-induced Parkinson’s disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy. Biomed. Pharmacother. 2017;95(July): 245–51.
  • Türkez H, Geyikoğlu F. The Anti-Genotoxic Effect of Taurine on Aluminum Sulphate-Induced DNA Damage in Human Peripheral Lymphocytes. Eur. J. Biol. 2010;69(1): 25–32.
  • Uysal H, Agar G. Selenium protective activity against Aflatoxin B1 adverse affects on Drosophila melanogaster. Brazilian Arch. Biol. Technol. 2005;48(2): 227–33.
  • WHO. 2005. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. IPCS, Geneva 2004, Switzerland.
  • Yucel MS, Kayis T. Imidacloprid induced alterations in oxidative stress, biochemical, genotoxic, and immunotoxic biomarkers in non-mammalian model organism Galleria mellonella L. (Lepidoptera: Pyralidae). J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 2019;54(1): 27–34.
  • Zang Y, Zhong Y, Luo Y, Kong ZM. Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ. Pollut. 2000;108(2): 271–8.
  • Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C. Potential human exposures to neonicotinoid insecticides: A review. Environ. Pollut. 2018;236: 71–81.
There are 25 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences
Journal Section RESEARCH ARTICLE
Authors

Damla Arslan Acaröz 0000-0001-9230-6725

Sinan İnce 0000-0002-1915-9797

Fahriye Zemheri Navruz 0000-0003-1744-1091

Nalan Bayşu-sözbilir 0000-0002-2270-8312

Publication Date June 30, 2020
Acceptance Date May 25, 2020
Published in Issue Year 2020 Volume: 13 Issue: 2

Cite

APA Arslan Acaröz, D., İnce, S., Zemheri Navruz, F., Bayşu-sözbilir, N. (2020). Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila melanogaster Model. Kocatepe Veterinary Journal, 13(2), 214-218. https://doi.org/10.30607/kvj.710779
AMA Arslan Acaröz D, İnce S, Zemheri Navruz F, Bayşu-sözbilir N. Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila melanogaster Model. kvj. June 2020;13(2):214-218. doi:10.30607/kvj.710779
Chicago Arslan Acaröz, Damla, Sinan İnce, Fahriye Zemheri Navruz, and Nalan Bayşu-sözbilir. “Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila Melanogaster Model”. Kocatepe Veterinary Journal 13, no. 2 (June 2020): 214-18. https://doi.org/10.30607/kvj.710779.
EndNote Arslan Acaröz D, İnce S, Zemheri Navruz F, Bayşu-sözbilir N (June 1, 2020) Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila melanogaster Model. Kocatepe Veterinary Journal 13 2 214–218.
IEEE D. Arslan Acaröz, S. İnce, F. Zemheri Navruz, and N. Bayşu-sözbilir, “Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila melanogaster Model”, kvj, vol. 13, no. 2, pp. 214–218, 2020, doi: 10.30607/kvj.710779.
ISNAD Arslan Acaröz, Damla et al. “Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila Melanogaster Model”. Kocatepe Veterinary Journal 13/2 (June 2020), 214-218. https://doi.org/10.30607/kvj.710779.
JAMA Arslan Acaröz D, İnce S, Zemheri Navruz F, Bayşu-sözbilir N. Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila melanogaster Model. kvj. 2020;13:214–218.
MLA Arslan Acaröz, Damla et al. “Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila Melanogaster Model”. Kocatepe Veterinary Journal, vol. 13, no. 2, 2020, pp. 214-8, doi:10.30607/kvj.710779.
Vancouver Arslan Acaröz D, İnce S, Zemheri Navruz F, Bayşu-sözbilir N. Protective Effects of Taurine on Imidacloprid-Induced DNA Damage and Reproductive Performance in The Drosophila melanogaster Model. kvj. 2020;13(2):214-8.

13520    13521       13522   1352314104

14105         14106        14107       14108