Research Article
BibTex RIS Cite

Elektron Demeti ile Işınlama Tekniğinin Hayvansal Ürünlerin Raf Ömrünün Uzatılmasında Kullanımı

Year 2020, Volume: 13 Issue: 4, 413 - 419, 31.12.2020
https://doi.org/10.30607/kvj.719068

Abstract

Gıda ışınlama sürecinde mikroorganizmaların dezenfeksiyonu ve gıdanın raf ömrünün uzatılması için gama ışınları, elektron ışını ve X ışınları kullanılır. Günümüzde, hayvansal gıda ürünleri için elektron demeti ile ışınlama işlemi ve tesisleri yaygın olarak tartışılmaktadır. Bu tekniğin birçok avantajı olmasına rağmen, hedefe ulaşmak için yüksek dozlara ihtiyaç duyulabilmektedir. Işınlama enerjisi, dozu ve hızı, penetrasyon derinliği, işlem hızı gibi ışınlama koşulları, bu tip bir ışınlama sistemi tasarımı için optimize edilmelidir. Gıdaların taze, dondurulmuş veya paketler halinde olması, tipi ve büyüklüğü, atmosfer ortamına geçiş süreci ve ışınlama parametreleri hedefe göre dikkatlice ayarlanması gereken parametrelerdir. Bu çalışmada, elektron demeti ile ışınlama sisteminin tasarım parametreleri açıklanmış ve düşük enerjili bir elektron hızlandırıcısının simülasyonu tanıtılmıştır. Bu çalışma, mevcut laboratuvar koşullarında yapılması planlanan bir sistemin tasarımı fikrinin ilk adımı olarak gerçekleştirilmiştir. Ayrıca böyle bir sistemin hedef malzemenin yüzeyi üzerine uygulanması ile sterilizasyon gibi uygulamalar için düşük enerjilerde çalışabileceği gösterilmiştir.

References

  • 1. Molins R., Motarjemi Y., Käferstein F. Irradiation: a critical control point in ensuring the microbiological safety of raw foods. Food Control, 12, 2001, 347–356.
  • 2. Farkas J. Food irradiation. In A. Mozumder, Y. Hatano (Eds.),Charged particle and photon interactions with matter. New York, Basel: Marcel Dekker, Inc. 2004, (pp. 785e812).
  • 3. Farkas J. Irradiation of poultry meat. In G. C. Mead (Ed.), Foodsafety control in the poultry Boca Raton/Cambridge: CRC Press/Woodhead Publ. Ltd., 2005 industry (pp. 433e453).
  • 4. Farkas J. and Farkas C.M., Histroy and future of food irradiaiton, Trends in Food Science and Techonology 22 2011, 121-126.
  • 5. Lagunas-Solar M. C. Radiation processing of foods. An overview of scientific principles and current status. Journal of Food Protection, 1995, 58, 186–192.
  • 6. Olson D. Food irradiation future still bright. Food Technology, 2004, 58 (7), 112.
  • 7. Olson D.G. Irradiation of food. Food Technology, 1998, 52, 56–62.
  • 8. Korel F., Orman S. Gıda Işınlaması, Uygulamaları ve Tüketicinin Işınlanmış Gıdaya Bakış Açısı Harran Üniversitesi Ziraat Fakültesi Dergisi, 2005, 9.2: 19-27.
  • 9. Kwon J. H., Kwon Y., Nam K. C., Lee E. J., Ahn D. U. Effect of electron-beam irradiation before and after cooking on the chemical properties of beef, pork, and chicken. Meat science, 2008, 80.3: 903-909.
  • 10. Arthur T. M. Wheeler T. L. Shackelford S. D., Bosilevac J. M., Nou X., Koohmaraie M. Effects of low-dose, low-penetration electron beam irradiation of chilled beef carcass surface cuts on Escherichia coli O157: H7 and meat quality. Journal of food protection, 2005, 68.4: 666-672.
  • 11. U.S. Department of Agriculture, Food Safety and Inspection Service. Food irradiation of meat food products, final rule. Fed. Regist. 1999, 64:72149–72166.
  • 12. Taha S. M. Incidence, toxigenicity and control of certain pathogenic bacteria in different environmental sources. Ph.D. Thesis, Faculty of Science, Ain Shams University, Cairo, Egypt, 1999.
  • 13. Woodburn M. J., Raob C. A. Household food following widely publicized outbreaks of foodborne illness. Journal of Food Protection, 1997, 60, 1105–1109.
  • 14. Park J. G., YoonY., Park J. N., Han I. J., Song B. S., Kim J. H., Lee J. W. Effects of gamma irradiation and electron beam irradiation on quality, sensory, and bacterial populations in beef sausage patties. Meat science, 2010, 85.2: 368-372.
  • 15. Radomyski T., Murano E. A., Olson D. G., Murano P. S. Elimination of pathogens of significance in food by low-dose irradiation: a review. Journal of food protection, 1994, 57.1: 73-86.
  • 16. Arvanitoyannis I. S. Irradiation of food commodities: techniques, applications, detection, legislation, safety and consumer opinion. Academic Press, 2010.
  • 17. Ozer Z. N. Electron beam irradiation processing for industrial and medical applications. In: EPJ Web of Conferences. EDP Sciences, 2017. p. 01019.
  • 18. Sommers C. H., Fan X. Food irradiation research and technology. John Wiley & Sons ed., 2008.
  • 19. Komolprasert V., Morehouse K. M., Morehouse K. Matthew Irradiation of Food And Packaging. Washington, DC: American Chemical Society, 2004.
  • 20. Goresline, H. E. Historical aspects of the radiation preservation of food. In: preservation of food by ionizing radiation. CRC Press, 2018. p. 1-46.
  • 21. Kobayashi K., Yasuda H. Formation of a superstructure in 1T-TiSe2 induced at room temperature by electron beam irradiation. Materials Research Express, 2018, 5.8: 085006.
  • 22. Wong P. Y. Y., Kitts D. D. Physicochemical and functional properties of shell eggs following electron beam irradiation. Journal of the Science of Food and Agriculture, 2003, 83.1: 44-52.
  • 23. Kim H. J., Yun H. J., Jung S., Jung Y. K., Kim K. H., Lee J. W., Jo C. U. Effects of electron beam irradiation on pathogen inactivation, quality, and functional properties of shell egg during ambient storage. Food Science of Animal Resources, 2010, 30.4: 603-608.
  • 24. Min B. R., Nam K. C., Lee E. J., Ko, G. Y., Trampel, D. W., Ahn, D. U. Effect of irradiating shell eggs on quality attributes and functional properties of yolk and white. Poultry science, 2005, 84.11: 1791-1796.
  • 25. Caja M. M., Del Castıllo Ml Ruiz, Blanch G. P. Solid phase microextraction as a methodology in the detection of irradiation markers in ground beef. Food chemistry, 2008, 110.2: 531-537.
  • 26. Lewis S. J., Velasquez A., Cuppett S. L. Effect of electron beam irradiation on poultry meat safety and quality. Poultry science, 2002, 81.6: 896-903.
  • 27. Duong D.Q., Crandall P.G., Pohlman F.W. O’Bryan C.A., Balentine C.W., Castillo A. Improving ground beef safety and stabilizing color during irradiation using antioxidants, reductants or TSP. Meat science, 2008, 78.4: 359-368.
  • 28. Silindir M., Özer A.Y. Sterilization methods and the comparison of e-beam sterilization with gamma radiation sterilization. Fabad Journal of Pharmaceutical Sciences, 2009, 34.1: 43.
  • 29. Kundu D., Holley R. Effect of low‐dose electron beam irradiation on quality of ground beef patties and raw, intact carcass muscle pieces. Journal of food science, 2013, 78.6: S920-S925.
  • 30. Maxim J. E., Neal J.A., Castillo A. Development of a novel device for applying uniform doses of electron beam irradiation on carcasses. Meat science, 2014, 96.1: 373-378.
  • 31. Miller R. B., Antonio A. L., Carreño I., Craven E., Strasser A., Kim J., Gryczka U. Food Irradiation Technologies: Concepts, Applications and Outcomes. Royal Society of Chemistry, 2017.
  • 32. Blackburn C. Food Irradiation Technologies: Concepts, Applications and Outcomes. Royal Society of Chemistry, 2017.
  • 33. Salimov R. A., Cherepkov V. G., Kuksanov N. K., Kuznetzov S. A. The use of electron accelerators for radiation disinfestation of grain. Radiation Physics and Chemistry, 2000, 57.3-6: 625-627.
  • 34. Turhan Ş., Karabacak H., Erel Y., Ocak S., Ünal S., Zengin T. Elektron hızlandırıcılarının gıda ışınlanması için değerlendirilmesi. 2002.
  • 35. Kim H. J., Yong H. I., Jayasena D. D., Lee H. J., Lee H., Jo C. Microbial safety and physicochemical characteristics of electron beam irradiated whole egg powder. Food science and biotechnology, 2016, 25.2: 637-642.
  • 36. Kim H. J., Yun H. J., Jung S., Jung Y. K., Kim K. H., Lee J. W., J. C. U. Effects of electron beam irradiation on pathogen inactivation, quality, and functional properties of shell egg during ambient storage. Food Science of Animal Resources, 2010, 30.4: 603-608.
  • 37. Ferraira I.C.F.R., Antonio A.L., Verde S.C. Food Irradiation Techlonogies Concepts, Applications and Outcomes, The Royal Society of Chemistry 2018.
  • 38. Cleland M. R.,Parks L. A.,Cheng S. Applications for radiation processing of materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 208: 66-73.
  • 39. Cleland M. R., Parks L.A. Medium and high-energy electron beam radiation processing equipment for commercial applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials And Atoms, 2003, 208: 74-89.
  • 40. Ozer Z.N., Yavuz M., Ozkan M., Yalım H.A. Design and simulation of low-energy electron accelerator for industrial applications, 3rd International Conference on Theoretical and Experimental Studies in Nuclear Applications and Technology 2017, 130.
  • 41. Auditore L., Barnà R. C., De Pasquale D., Interdonato S., Italiano A., Trifiró A.,Trimarchi M. Compact 300 keV electron gun for radiation processing. Review of scientific instruments, 2005, 76.12: 123301.
  • 42. Scientific Instrument Services Inc., USA. Simion, www.simion.com. Accessien date: 02.03.2020.
  • 43. Dassault Systèmes Corp., USA. SolidWorks, www.solidworks.com Accessien date: 15.01.2020.

Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products

Year 2020, Volume: 13 Issue: 4, 413 - 419, 31.12.2020
https://doi.org/10.30607/kvj.719068

Abstract

For food processing gamma rays, electron beam and X-rays are used for disinfection of microorganisms and for extension of the shelf-life of the food. Electron beam irradiation process and its facilities are discussed widely for animal food products, nowadays. Although there are many advantages of this technique, high doses may be needed to achieve desired purposes. The irradiation conditions such as irradiation energy, dose and speed, penetration depth, processing speed should be optimized for such an irradiation apparatus design. The type and the size of the food; if it is fresh, frozen or in packets; transition process to atmospheric medium and irradiation parameters are the issues that need to be adjusted carefully according to aims. In this work, design parameters of an electron beam irradiation system are described and simulation of a low energy electron curtain accelerator is introduced. This study was carried out as the first step with the construction idea of a system that is planned to be made most appropriately in the current laboratory conditions. Also is to demonstrate the operability of such a system at low energies for sterilization on the surface of the target material.

References

  • 1. Molins R., Motarjemi Y., Käferstein F. Irradiation: a critical control point in ensuring the microbiological safety of raw foods. Food Control, 12, 2001, 347–356.
  • 2. Farkas J. Food irradiation. In A. Mozumder, Y. Hatano (Eds.),Charged particle and photon interactions with matter. New York, Basel: Marcel Dekker, Inc. 2004, (pp. 785e812).
  • 3. Farkas J. Irradiation of poultry meat. In G. C. Mead (Ed.), Foodsafety control in the poultry Boca Raton/Cambridge: CRC Press/Woodhead Publ. Ltd., 2005 industry (pp. 433e453).
  • 4. Farkas J. and Farkas C.M., Histroy and future of food irradiaiton, Trends in Food Science and Techonology 22 2011, 121-126.
  • 5. Lagunas-Solar M. C. Radiation processing of foods. An overview of scientific principles and current status. Journal of Food Protection, 1995, 58, 186–192.
  • 6. Olson D. Food irradiation future still bright. Food Technology, 2004, 58 (7), 112.
  • 7. Olson D.G. Irradiation of food. Food Technology, 1998, 52, 56–62.
  • 8. Korel F., Orman S. Gıda Işınlaması, Uygulamaları ve Tüketicinin Işınlanmış Gıdaya Bakış Açısı Harran Üniversitesi Ziraat Fakültesi Dergisi, 2005, 9.2: 19-27.
  • 9. Kwon J. H., Kwon Y., Nam K. C., Lee E. J., Ahn D. U. Effect of electron-beam irradiation before and after cooking on the chemical properties of beef, pork, and chicken. Meat science, 2008, 80.3: 903-909.
  • 10. Arthur T. M. Wheeler T. L. Shackelford S. D., Bosilevac J. M., Nou X., Koohmaraie M. Effects of low-dose, low-penetration electron beam irradiation of chilled beef carcass surface cuts on Escherichia coli O157: H7 and meat quality. Journal of food protection, 2005, 68.4: 666-672.
  • 11. U.S. Department of Agriculture, Food Safety and Inspection Service. Food irradiation of meat food products, final rule. Fed. Regist. 1999, 64:72149–72166.
  • 12. Taha S. M. Incidence, toxigenicity and control of certain pathogenic bacteria in different environmental sources. Ph.D. Thesis, Faculty of Science, Ain Shams University, Cairo, Egypt, 1999.
  • 13. Woodburn M. J., Raob C. A. Household food following widely publicized outbreaks of foodborne illness. Journal of Food Protection, 1997, 60, 1105–1109.
  • 14. Park J. G., YoonY., Park J. N., Han I. J., Song B. S., Kim J. H., Lee J. W. Effects of gamma irradiation and electron beam irradiation on quality, sensory, and bacterial populations in beef sausage patties. Meat science, 2010, 85.2: 368-372.
  • 15. Radomyski T., Murano E. A., Olson D. G., Murano P. S. Elimination of pathogens of significance in food by low-dose irradiation: a review. Journal of food protection, 1994, 57.1: 73-86.
  • 16. Arvanitoyannis I. S. Irradiation of food commodities: techniques, applications, detection, legislation, safety and consumer opinion. Academic Press, 2010.
  • 17. Ozer Z. N. Electron beam irradiation processing for industrial and medical applications. In: EPJ Web of Conferences. EDP Sciences, 2017. p. 01019.
  • 18. Sommers C. H., Fan X. Food irradiation research and technology. John Wiley & Sons ed., 2008.
  • 19. Komolprasert V., Morehouse K. M., Morehouse K. Matthew Irradiation of Food And Packaging. Washington, DC: American Chemical Society, 2004.
  • 20. Goresline, H. E. Historical aspects of the radiation preservation of food. In: preservation of food by ionizing radiation. CRC Press, 2018. p. 1-46.
  • 21. Kobayashi K., Yasuda H. Formation of a superstructure in 1T-TiSe2 induced at room temperature by electron beam irradiation. Materials Research Express, 2018, 5.8: 085006.
  • 22. Wong P. Y. Y., Kitts D. D. Physicochemical and functional properties of shell eggs following electron beam irradiation. Journal of the Science of Food and Agriculture, 2003, 83.1: 44-52.
  • 23. Kim H. J., Yun H. J., Jung S., Jung Y. K., Kim K. H., Lee J. W., Jo C. U. Effects of electron beam irradiation on pathogen inactivation, quality, and functional properties of shell egg during ambient storage. Food Science of Animal Resources, 2010, 30.4: 603-608.
  • 24. Min B. R., Nam K. C., Lee E. J., Ko, G. Y., Trampel, D. W., Ahn, D. U. Effect of irradiating shell eggs on quality attributes and functional properties of yolk and white. Poultry science, 2005, 84.11: 1791-1796.
  • 25. Caja M. M., Del Castıllo Ml Ruiz, Blanch G. P. Solid phase microextraction as a methodology in the detection of irradiation markers in ground beef. Food chemistry, 2008, 110.2: 531-537.
  • 26. Lewis S. J., Velasquez A., Cuppett S. L. Effect of electron beam irradiation on poultry meat safety and quality. Poultry science, 2002, 81.6: 896-903.
  • 27. Duong D.Q., Crandall P.G., Pohlman F.W. O’Bryan C.A., Balentine C.W., Castillo A. Improving ground beef safety and stabilizing color during irradiation using antioxidants, reductants or TSP. Meat science, 2008, 78.4: 359-368.
  • 28. Silindir M., Özer A.Y. Sterilization methods and the comparison of e-beam sterilization with gamma radiation sterilization. Fabad Journal of Pharmaceutical Sciences, 2009, 34.1: 43.
  • 29. Kundu D., Holley R. Effect of low‐dose electron beam irradiation on quality of ground beef patties and raw, intact carcass muscle pieces. Journal of food science, 2013, 78.6: S920-S925.
  • 30. Maxim J. E., Neal J.A., Castillo A. Development of a novel device for applying uniform doses of electron beam irradiation on carcasses. Meat science, 2014, 96.1: 373-378.
  • 31. Miller R. B., Antonio A. L., Carreño I., Craven E., Strasser A., Kim J., Gryczka U. Food Irradiation Technologies: Concepts, Applications and Outcomes. Royal Society of Chemistry, 2017.
  • 32. Blackburn C. Food Irradiation Technologies: Concepts, Applications and Outcomes. Royal Society of Chemistry, 2017.
  • 33. Salimov R. A., Cherepkov V. G., Kuksanov N. K., Kuznetzov S. A. The use of electron accelerators for radiation disinfestation of grain. Radiation Physics and Chemistry, 2000, 57.3-6: 625-627.
  • 34. Turhan Ş., Karabacak H., Erel Y., Ocak S., Ünal S., Zengin T. Elektron hızlandırıcılarının gıda ışınlanması için değerlendirilmesi. 2002.
  • 35. Kim H. J., Yong H. I., Jayasena D. D., Lee H. J., Lee H., Jo C. Microbial safety and physicochemical characteristics of electron beam irradiated whole egg powder. Food science and biotechnology, 2016, 25.2: 637-642.
  • 36. Kim H. J., Yun H. J., Jung S., Jung Y. K., Kim K. H., Lee J. W., J. C. U. Effects of electron beam irradiation on pathogen inactivation, quality, and functional properties of shell egg during ambient storage. Food Science of Animal Resources, 2010, 30.4: 603-608.
  • 37. Ferraira I.C.F.R., Antonio A.L., Verde S.C. Food Irradiation Techlonogies Concepts, Applications and Outcomes, The Royal Society of Chemistry 2018.
  • 38. Cleland M. R.,Parks L. A.,Cheng S. Applications for radiation processing of materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 208: 66-73.
  • 39. Cleland M. R., Parks L.A. Medium and high-energy electron beam radiation processing equipment for commercial applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials And Atoms, 2003, 208: 74-89.
  • 40. Ozer Z.N., Yavuz M., Ozkan M., Yalım H.A. Design and simulation of low-energy electron accelerator for industrial applications, 3rd International Conference on Theoretical and Experimental Studies in Nuclear Applications and Technology 2017, 130.
  • 41. Auditore L., Barnà R. C., De Pasquale D., Interdonato S., Italiano A., Trifiró A.,Trimarchi M. Compact 300 keV electron gun for radiation processing. Review of scientific instruments, 2005, 76.12: 123301.
  • 42. Scientific Instrument Services Inc., USA. Simion, www.simion.com. Accessien date: 02.03.2020.
  • 43. Dassault Systèmes Corp., USA. SolidWorks, www.solidworks.com Accessien date: 15.01.2020.
There are 43 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section RESEARCH ARTICLE
Authors

Zehra Nur Özer 0000-0002-5887-4486

Publication Date December 31, 2020
Acceptance Date November 23, 2020
Published in Issue Year 2020 Volume: 13 Issue: 4

Cite

APA Özer, Z. N. (2020). Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products. Kocatepe Veterinary Journal, 13(4), 413-419. https://doi.org/10.30607/kvj.719068
AMA Özer ZN. Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products. kvj. December 2020;13(4):413-419. doi:10.30607/kvj.719068
Chicago Özer, Zehra Nur. “Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products”. Kocatepe Veterinary Journal 13, no. 4 (December 2020): 413-19. https://doi.org/10.30607/kvj.719068.
EndNote Özer ZN (December 1, 2020) Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products. Kocatepe Veterinary Journal 13 4 413–419.
IEEE Z. N. Özer, “Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products”, kvj, vol. 13, no. 4, pp. 413–419, 2020, doi: 10.30607/kvj.719068.
ISNAD Özer, Zehra Nur. “Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products”. Kocatepe Veterinary Journal 13/4 (December 2020), 413-419. https://doi.org/10.30607/kvj.719068.
JAMA Özer ZN. Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products. kvj. 2020;13:413–419.
MLA Özer, Zehra Nur. “Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products”. Kocatepe Veterinary Journal, vol. 13, no. 4, 2020, pp. 413-9, doi:10.30607/kvj.719068.
Vancouver Özer ZN. Application of Electron Beam Irradiation Technique for Shelf-Life Extension of Animal Food Products. kvj. 2020;13(4):413-9.

13520    13521       13522   1352314104

14105         14106        14107       14108