Research Article
BibTex RIS Cite

Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi

Year 2022, Volume: 61 Issue: 1, 31 - 40, 07.03.2022
https://doi.org/10.30797/madencilik.967090

Abstract

Bu çalışmada, çimentolu macun dolgu (ÇMD) karışımında sülfürlü maden atığı (S-MA) yerine ikame (ağırlıkça %10) olarak doğal alkali malzemelerin (kalsitik kireçtaşı: KK ve dolomitik kireçtaşı: DK) kullanılmasının ÇMD’nin uzun dönem çevresel davranışına etkileri araştırılmıştır. Bu amaçla, ÇMD numuneleri 360 güne kadar dinamik tank liçi testlerine tabi tutulmuş ve elde edilen sızıntı suları üzerinde pH, sülfat (SO42-) ve ağır metal (Cu-As-Pb-Cd-Co-Ni-Cr) analizleri gerçekleştirilmiştir. Ayrıca, mineraloji ve mikroyapı özelliklerinin ÇMD’nin çevresel davranışına etkisi X-ışınları difraktometre ve porozite testleri ile incelenmiştir. Bulgular, KK ve DK kullanımı ile sızıntı suyu pH’ının alkali seviyelerde seyrettiğini ve SO42- salınımının önemli ölçüde azaltıldığını göstermiştir. Dahası, KK ve DK ikameli ÇMD numunelerindeki daha yoğun mikroyapı ÇMD'den ağır metallerin (Cu, Mo ve Pb hariç) salınımının engellenmesine veya büyük ölçüde azaltılmasına katkı sağlamıştır. Sonuçlar, ÇMD’nin maliyet ve mekanik özelliklerinin yanısıra yeraltı suyu kirliliği üzerindeki etkisinin de dikkatle değerlendirilmesinin gerektiğini ortaya koymaktadır.

Supporting Institution

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FDK 2016-5500

Thanks

Yazarlar, mali destek ve analiz desteği için sırasıyla KTÜ Bilimsel Araştırma Projeleri Birimi’ne (Proje No: FDK 2016-5500) ve Dr. Soner TOP nezdinde AGÜ Merkez Araştırma Laboratuvarı’na teşekkürlerini sunarlar.

References

  • ASTM C1308-08, 2017. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • ASTM D 4404-18, 2018. Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • Bull, A.J., Fall, M. 2020. Thermally induced changes in metalloid leachability of cemented paste backfill that contains blast furnace slag. Minerals Engineering. 156, 106520. https://doi.org/10.1016/j.mineng.2020.106520
  • Chen, Q., Zhang, L., Ke, Y., Hills, C., Kang, Y. 2009. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge. Chemosphere. 74(6), 758-764. https://doi.org/10.1016/j.chemosphere.2008.10.044
  • Cihangir, F., Akyol, Y. 2018. Mechanical, hydrological and microstructural assessment of the durability of cemented paste backfill containing alkali-activated slag. International Journal of Mining, Reclamation and Environment. 32(2), 123-143. https://doi.org/10.1080/17480930.2016.1242183
  • Coussy, S., Benzaazoua, M., Blanc, D., Moszkowicz, P., Bussière, B. 2011. Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment. Journal of Hazardous Materials. 185(2-3), 1467-1476. https://doi.org/10.1016/j.jhazmat.2010.10.070
  • Dayioglu, A.Y., Aydilek, A.H., Cimen, O., Cimen, M. 2018. Trace metal leaching from steel slag used in structural fills. Journal of Geotechnical and Geoenvironmental Engineering. 144(12), 04018089. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001980
  • Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. 2017 Practical importance of tailings for cemented paste backfill. Yilmaz, E. and Fall, M. (Eds). Paste Tailings Management, Springer International Publishing. Cham, 7-32. https://doi.org/10.1007/978-3-319-39682-8
  • Erçıkdı, B., Yılmaz, T. 2019. Çimentolu macun dolgunun dayanım ve mikroyapı özellikleri; C-sınıfı uçucu külün etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 21(61), 15-23. DOI:10.21205/deufmd.2019216102
  • European Commission, 2018. Best available techniques (BAT) reference document for the management of waste from extractive industries, pp. 195.
  • Fall, M., Adrien, D., Célestin, J.C., Pokharel, M., Touré, M. 2009. Saturated hydraulic conductivity of cemented paste backfill. Minerals Engineering. 22(15), 1307-1317. https://doi.org/10.1016/j.mineng.2009.08.002
  • Gwenzi, W., Mupatsi, N.M. 2016. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris. Waste Management. 49, 114-123. https://doi.org/10.1016/j.wasman.2015.12.029
  • Hakkou, R., Benzaazoua, M., Bussiere, B. 2008. Acid mine drainage at the abandoned Kettara mine (Morocco): 2. Mine waste geochemical behavior. Mine Water and the Environment. 27(3), 160-170. https://doi.org/10.1007/s10230-008-0035-7
  • Hamberg, R., Maurice, C., Alakangas, L. 2015. The use of low binder proportions in cemented paste backfill–effects on As-leaching. Minerals Engineering. 78, 74-82. https://doi.org/10.1016/j.mineng.2015.04.017
  • Hamberg, R., Maurice, C., Alakangas, L. 2017. Lowering the water saturation level in cemented paste backfill mixtures–effect on the release of arsenic. Minerals Engineering. 112, 84-91. https://doi.org/10.1016/j.mineng.2017.05.005
  • Hamberg, R., Maurice, C., Alakangas, L. 2018. The formation of unsaturated zones within cemented paste backfill mixtures—effects on the release of copper, nickel, and zinc. Environmental Science and Pollution Research. 25(21), 20809-20822. https://doi.org/10.1007/s11356-018-2222-9
  • Jiao, H. Z., Wu, A.X., Wang, H.J., Yang, S.K., Li, R., Xiao, Y.T. 2011. The influence of cemented paste backfill on groundwater quality. Procedia Earth and Planetary Science, 2, 183-188. https://doi.org/10.1016/j.proeps.2011.09.030
  • Jones, S.N., Cetin, B. 2017. Evaluation of waste materials for acid mine drainage remediation. Fuel. 188, 294-309. https://doi.org/10.1016/j.fuel.2016.10.018
  • Liu, H., Zhang, J., Li, B., Zhou, N., Xiao, X., Li, M., Zhu, C. 2020. Environmental behavior of construction and demolition waste as recycled aggregates for backfilling in mines: leaching toxicity and surface subsidence studies. Journal of Hazardous Materials. 389, 121870. https://doi.org/10.1016/j.jhazmat.2019.121870
  • MEND, 2006. MEND Report 10.2 – Paste backfill geochemistry – Environmental effects of leaching and weathering, Mine Environment Neutral Drainage (MEND) Program, April 2006, Canada.
  • Pokharel, M., Fall, M. 2013. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill. Cement and Concrete Composites. 38, 21-28. https://doi.org/10.1016/j.cemconcomp.2013.03.015
  • Potgieter-Vermaak, S.S., Potgieter, J.H., Monama, P., Van Grieken, R. 2006. Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage. Minerals Engineering. 19(5), 454-462. https://doi.org/10.1016/j.mineng.2005.07.009
  • Salzsauler, K.A., Sidenko, N.V., Sherriff, B.L. 2005. Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry. 20(12), 2303-2314. https://doi.org/10.1016/j.apgeochem.2005.06.007
  • Schafer, W. 2016. Geochemical evaluation of cemented paste tailings in a flooded underground mine. Annual Meeting of the International-Mine-Water-Association (IMWA), July, Germany, 11-15.
  • Seipel, K.S., Sheumaker, D.L., Kirk, L.B. 2017. Kinetic tests of non-amended and cemented paste tailings geochemistry in subaqueous and subaerial settings. 13th International Mine Water Association Congress, June, Lappeenranta, 830-835.
  • Sobek, A.A., Schuller, W.A., Freeman, J.R., Smith, R.M. 1978. Field and laboratory methods applicable to overburdens and minesoils, EPA-600/2-78-054, Cincinnati, Ohio: U.S. Environmental Protection Agency, p. 203.
  • Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V., Filip, J., Vaněk, A., Penížek, V., Ettler, V., Mapani, B. 2014. Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia. Environmental Monitoring and Assessment. 186(8), 4891-4903. https://doi.org/10.1007/s10661-014-3746-1
  • Taha, Y., Benarchid, Y., Benzaazoua, M. 2019. Environmental behavior of waste rocks based concrete: Leaching performance assessment. Resources Policy. 101419. https://doi.org/10.1016/j.resourpol.2019.101419
  • US EPA 1315-1, 2013. Mass transfer rates of constituents in monolithic or compacted granular materials using a semi-dynamic tank leaching procedure. Test methods for evaluating solid waste, physical/chemical methods. Office of Wastewater Management, Washington DC.
  • WHO (World Health Organization), 2011. Guidelines for drinking water quality. WHO Chron 4,104.
  • Yang, Y., Zhao, T., Jiao, H., Wang, Y., Li, H. 2020. Potential effect of porosity evolution of cemented paste backfill on selective solidification of heavy metal ions. International Journal of Environmental Research and Public Health. 17(3), 814. https://doi.org/10.3390/ijerph17030814
  • Yılmaz, T., Ercikdi, B., Deveci, H. 2018. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. Journal of Environmental Management. 222, 250-259. https://doi.org/10.1016/j.jenvman.2018.05.075
  • Yılmaz, T., Ercikdi, B., Cihangir, F. 2020. Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill. Journal of Environmental Management. 258, 110037. https://doi.org/10.1016/j.jenvman.2019.110037
  • Yılmaz, T., Ercikdi, B., Deveci, H. 2021. Evaluation of geochemical behaviour of flooded cemented paste backfill of sulphide-rich tailings by dynamic-tank leaching test. International Journal of Mining, Reclamation and Environment. 35(5), 336-355. https://doi.org/10.1080/17480930.2020.1829778
  • Yılmaz, T., Ercikdi, B. 2021. Effect of construction and demolition waste on the long-term geo-environmental behaviour of cemented paste backfill. International Journal of Environmental Science and Technology. 1-14. https://doi.org/10.1007/s13762-021-03359-2
  • Yilmaz, E., Fall, M. 2017 Introduction to paste tailings management. Yilmaz, E. Fall, M. (Eds). Paste Tailings Management. Springer International Publishing. Cham, 1-5. https://doi.org/10.1007/978-3-319-39682-8
  • Yumlu, M. 2020. The general framework and international applications regarding the paste backfill method. Workshop on the evaluation of paste backfill support system in terms of technical, environmental and legislation, Turkey Miner Association, 26 August, Ankara, Turkey (In Turkish).
  • Zheng, J., Zhu, Y., Zhao, Z. 2016. Utilization of limestone powder and water-reducing admixture in cemented paste backfill of coarse copper mine tailings. Construction and Building Materials. 124, 31-36. https://doi.org/10.1016/j.conbuildmat.2016.07.055

Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill

Year 2022, Volume: 61 Issue: 1, 31 - 40, 07.03.2022
https://doi.org/10.30797/madencilik.967090

Abstract

In this study, effects of the utilization of natural alkaline materials (calcitic limestone; CL and dolomitic limestone; DL) as replacement (10 wt.%) to sulphide mine tailings (S-MT) in cemented paste backfill (CPB) mixture on the long-term environmental behaviour of CPB were investigated. For this purpose, CPB samples (CPBs) were subjected to dynamic tank leaching (DTL) tests over 360-days and the analyses of pH, sulphate (SO42-) and heavy metals (HMs) (Cu-As-Pb-Cd-Co-Ni-Cr) on the leachates were carried out. The effects of mineralogy and microstructure on the environmental behavior of CPBs were also examined by X-ray diffractometry and porosity tests. The findings showed that with the utilization of CL and DL, the pH of leachates remained at alkaline levels and the release of SO42- was significantly reduced. Furthermore, the denser microstructure in CPBs of CL and DL contributed to be prevented or be remarkably reduced the HMs-releases (except Cu, Mo and Pb). The results reveal that the cost and mechanical properties of CPB as well as its impact on the groundwater pollution should be carefully evaluated.

Project Number

FDK 2016-5500

References

  • ASTM C1308-08, 2017. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • ASTM D 4404-18, 2018. Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • Bull, A.J., Fall, M. 2020. Thermally induced changes in metalloid leachability of cemented paste backfill that contains blast furnace slag. Minerals Engineering. 156, 106520. https://doi.org/10.1016/j.mineng.2020.106520
  • Chen, Q., Zhang, L., Ke, Y., Hills, C., Kang, Y. 2009. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge. Chemosphere. 74(6), 758-764. https://doi.org/10.1016/j.chemosphere.2008.10.044
  • Cihangir, F., Akyol, Y. 2018. Mechanical, hydrological and microstructural assessment of the durability of cemented paste backfill containing alkali-activated slag. International Journal of Mining, Reclamation and Environment. 32(2), 123-143. https://doi.org/10.1080/17480930.2016.1242183
  • Coussy, S., Benzaazoua, M., Blanc, D., Moszkowicz, P., Bussière, B. 2011. Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment. Journal of Hazardous Materials. 185(2-3), 1467-1476. https://doi.org/10.1016/j.jhazmat.2010.10.070
  • Dayioglu, A.Y., Aydilek, A.H., Cimen, O., Cimen, M. 2018. Trace metal leaching from steel slag used in structural fills. Journal of Geotechnical and Geoenvironmental Engineering. 144(12), 04018089. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001980
  • Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. 2017 Practical importance of tailings for cemented paste backfill. Yilmaz, E. and Fall, M. (Eds). Paste Tailings Management, Springer International Publishing. Cham, 7-32. https://doi.org/10.1007/978-3-319-39682-8
  • Erçıkdı, B., Yılmaz, T. 2019. Çimentolu macun dolgunun dayanım ve mikroyapı özellikleri; C-sınıfı uçucu külün etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 21(61), 15-23. DOI:10.21205/deufmd.2019216102
  • European Commission, 2018. Best available techniques (BAT) reference document for the management of waste from extractive industries, pp. 195.
  • Fall, M., Adrien, D., Célestin, J.C., Pokharel, M., Touré, M. 2009. Saturated hydraulic conductivity of cemented paste backfill. Minerals Engineering. 22(15), 1307-1317. https://doi.org/10.1016/j.mineng.2009.08.002
  • Gwenzi, W., Mupatsi, N.M. 2016. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris. Waste Management. 49, 114-123. https://doi.org/10.1016/j.wasman.2015.12.029
  • Hakkou, R., Benzaazoua, M., Bussiere, B. 2008. Acid mine drainage at the abandoned Kettara mine (Morocco): 2. Mine waste geochemical behavior. Mine Water and the Environment. 27(3), 160-170. https://doi.org/10.1007/s10230-008-0035-7
  • Hamberg, R., Maurice, C., Alakangas, L. 2015. The use of low binder proportions in cemented paste backfill–effects on As-leaching. Minerals Engineering. 78, 74-82. https://doi.org/10.1016/j.mineng.2015.04.017
  • Hamberg, R., Maurice, C., Alakangas, L. 2017. Lowering the water saturation level in cemented paste backfill mixtures–effect on the release of arsenic. Minerals Engineering. 112, 84-91. https://doi.org/10.1016/j.mineng.2017.05.005
  • Hamberg, R., Maurice, C., Alakangas, L. 2018. The formation of unsaturated zones within cemented paste backfill mixtures—effects on the release of copper, nickel, and zinc. Environmental Science and Pollution Research. 25(21), 20809-20822. https://doi.org/10.1007/s11356-018-2222-9
  • Jiao, H. Z., Wu, A.X., Wang, H.J., Yang, S.K., Li, R., Xiao, Y.T. 2011. The influence of cemented paste backfill on groundwater quality. Procedia Earth and Planetary Science, 2, 183-188. https://doi.org/10.1016/j.proeps.2011.09.030
  • Jones, S.N., Cetin, B. 2017. Evaluation of waste materials for acid mine drainage remediation. Fuel. 188, 294-309. https://doi.org/10.1016/j.fuel.2016.10.018
  • Liu, H., Zhang, J., Li, B., Zhou, N., Xiao, X., Li, M., Zhu, C. 2020. Environmental behavior of construction and demolition waste as recycled aggregates for backfilling in mines: leaching toxicity and surface subsidence studies. Journal of Hazardous Materials. 389, 121870. https://doi.org/10.1016/j.jhazmat.2019.121870
  • MEND, 2006. MEND Report 10.2 – Paste backfill geochemistry – Environmental effects of leaching and weathering, Mine Environment Neutral Drainage (MEND) Program, April 2006, Canada.
  • Pokharel, M., Fall, M. 2013. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill. Cement and Concrete Composites. 38, 21-28. https://doi.org/10.1016/j.cemconcomp.2013.03.015
  • Potgieter-Vermaak, S.S., Potgieter, J.H., Monama, P., Van Grieken, R. 2006. Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage. Minerals Engineering. 19(5), 454-462. https://doi.org/10.1016/j.mineng.2005.07.009
  • Salzsauler, K.A., Sidenko, N.V., Sherriff, B.L. 2005. Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry. 20(12), 2303-2314. https://doi.org/10.1016/j.apgeochem.2005.06.007
  • Schafer, W. 2016. Geochemical evaluation of cemented paste tailings in a flooded underground mine. Annual Meeting of the International-Mine-Water-Association (IMWA), July, Germany, 11-15.
  • Seipel, K.S., Sheumaker, D.L., Kirk, L.B. 2017. Kinetic tests of non-amended and cemented paste tailings geochemistry in subaqueous and subaerial settings. 13th International Mine Water Association Congress, June, Lappeenranta, 830-835.
  • Sobek, A.A., Schuller, W.A., Freeman, J.R., Smith, R.M. 1978. Field and laboratory methods applicable to overburdens and minesoils, EPA-600/2-78-054, Cincinnati, Ohio: U.S. Environmental Protection Agency, p. 203.
  • Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V., Filip, J., Vaněk, A., Penížek, V., Ettler, V., Mapani, B. 2014. Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia. Environmental Monitoring and Assessment. 186(8), 4891-4903. https://doi.org/10.1007/s10661-014-3746-1
  • Taha, Y., Benarchid, Y., Benzaazoua, M. 2019. Environmental behavior of waste rocks based concrete: Leaching performance assessment. Resources Policy. 101419. https://doi.org/10.1016/j.resourpol.2019.101419
  • US EPA 1315-1, 2013. Mass transfer rates of constituents in monolithic or compacted granular materials using a semi-dynamic tank leaching procedure. Test methods for evaluating solid waste, physical/chemical methods. Office of Wastewater Management, Washington DC.
  • WHO (World Health Organization), 2011. Guidelines for drinking water quality. WHO Chron 4,104.
  • Yang, Y., Zhao, T., Jiao, H., Wang, Y., Li, H. 2020. Potential effect of porosity evolution of cemented paste backfill on selective solidification of heavy metal ions. International Journal of Environmental Research and Public Health. 17(3), 814. https://doi.org/10.3390/ijerph17030814
  • Yılmaz, T., Ercikdi, B., Deveci, H. 2018. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. Journal of Environmental Management. 222, 250-259. https://doi.org/10.1016/j.jenvman.2018.05.075
  • Yılmaz, T., Ercikdi, B., Cihangir, F. 2020. Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill. Journal of Environmental Management. 258, 110037. https://doi.org/10.1016/j.jenvman.2019.110037
  • Yılmaz, T., Ercikdi, B., Deveci, H. 2021. Evaluation of geochemical behaviour of flooded cemented paste backfill of sulphide-rich tailings by dynamic-tank leaching test. International Journal of Mining, Reclamation and Environment. 35(5), 336-355. https://doi.org/10.1080/17480930.2020.1829778
  • Yılmaz, T., Ercikdi, B. 2021. Effect of construction and demolition waste on the long-term geo-environmental behaviour of cemented paste backfill. International Journal of Environmental Science and Technology. 1-14. https://doi.org/10.1007/s13762-021-03359-2
  • Yilmaz, E., Fall, M. 2017 Introduction to paste tailings management. Yilmaz, E. Fall, M. (Eds). Paste Tailings Management. Springer International Publishing. Cham, 1-5. https://doi.org/10.1007/978-3-319-39682-8
  • Yumlu, M. 2020. The general framework and international applications regarding the paste backfill method. Workshop on the evaluation of paste backfill support system in terms of technical, environmental and legislation, Turkey Miner Association, 26 August, Ankara, Turkey (In Turkish).
  • Zheng, J., Zhu, Y., Zhao, Z. 2016. Utilization of limestone powder and water-reducing admixture in cemented paste backfill of coarse copper mine tailings. Construction and Building Materials. 124, 31-36. https://doi.org/10.1016/j.conbuildmat.2016.07.055
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Article
Authors

Tekin Yılmaz 0000-0003-3288-5192

Bayram Erçıkdı 0000-0003-4900-5382

Project Number FDK 2016-5500
Publication Date March 7, 2022
Submission Date July 8, 2021
Published in Issue Year 2022 Volume: 61 Issue: 1

Cite

APA Yılmaz, T., & Erçıkdı, B. (2022). Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi. Bilimsel Madencilik Dergisi, 61(1), 31-40. https://doi.org/10.30797/madencilik.967090
AMA Yılmaz T, Erçıkdı B. Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi. Mining. March 2022;61(1):31-40. doi:10.30797/madencilik.967090
Chicago Yılmaz, Tekin, and Bayram Erçıkdı. “Kalsitik Ve Dolomitik kireçtaşlarının çimentolu Macun Dolgunun çevresel davranışına Etkisi”. Bilimsel Madencilik Dergisi 61, no. 1 (March 2022): 31-40. https://doi.org/10.30797/madencilik.967090.
EndNote Yılmaz T, Erçıkdı B (March 1, 2022) Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi. Bilimsel Madencilik Dergisi 61 1 31–40.
IEEE T. Yılmaz and B. Erçıkdı, “Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi”, Mining, vol. 61, no. 1, pp. 31–40, 2022, doi: 10.30797/madencilik.967090.
ISNAD Yılmaz, Tekin - Erçıkdı, Bayram. “Kalsitik Ve Dolomitik kireçtaşlarının çimentolu Macun Dolgunun çevresel davranışına Etkisi”. Bilimsel Madencilik Dergisi 61/1 (March 2022), 31-40. https://doi.org/10.30797/madencilik.967090.
JAMA Yılmaz T, Erçıkdı B. Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi. Mining. 2022;61:31–40.
MLA Yılmaz, Tekin and Bayram Erçıkdı. “Kalsitik Ve Dolomitik kireçtaşlarının çimentolu Macun Dolgunun çevresel davranışına Etkisi”. Bilimsel Madencilik Dergisi, vol. 61, no. 1, 2022, pp. 31-40, doi:10.30797/madencilik.967090.
Vancouver Yılmaz T, Erçıkdı B. Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi. Mining. 2022;61(1):31-40.

22562 22561 22560 22590 22558