Review
BibTex RIS Cite

Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı

Year 2022, Volume: 61 Issue: 2, 105 - 120, 26.06.2022
https://doi.org/10.30797/madencilik.1010286

Abstract

Lityum, farklı özellikleri (düşük elektrot potansiyeli ve spesifik ısı kapasitesi) nedeniyle pek çok endüstride (pil, seramik ve cam sanayi, gres yağı, polimer, metalürji, klima sistemleri) yaygın bir şekilde kullanılmakdadır. Son yıllarda, gelişen teknolojiye bağlı olarak yeni alanlarda da (elektrikli araçlar, enerji depolama) kullanımıyla birlikte lityuma olan talep artmıştır. Bu nedenle, lityum Avrupa Birliği Komisyonu tarafından kritik hammaddeler listesine alınmıştır. Lityum üretimi çoğunlukla tuzlu su kaynaklarından ve cevherlerden (spodümen, lepidolit, zinvaldit, ambligonit, pedalit gibi) yapılmaktadır. Bununla birlikte, son yıllarda lityum-iyon piller gibi ikincil kaynaklardan da üretimi gerçekleştirilmektedir. Spodümen gibi cevher ya da konsantrelerden lityum kazanımı yaygın olarak sülfürik asit/kavurma prosesiyle gerçekleştirilir. Bu çalışmada, lityumun kritik hammadde olarak önemi, Dünya ve ülkemizin lityum potansiyeli ve cevherlerden/tuzlu su kaynaklarından lityum üretimi için uygulanan prosesler detaylı olarak incelenmiştir. Literatürde cevherlerden ve tuzlu su kaynaklarından lityum kazanımı üzerine yapılmış farklı araştırmaların bulguları tartışılmıştır. Ayrıca, Dünya’da lityum kazanımının gerçekleştirildiği tesislerden akım şemaları sunulmuştur.

References

  • Aghamirian, M., Mohs, C., Grammatikopoulos, T., Imeson, D., Pearse, G., 2012. An overview of spodumene beneficiation. In: 44th Annual Canadian Mineral Processors Operators’ Conference, 141-153.
  • Akyıldız, S. 2015. Kırka boraks madeni killerinin ve işletme atıklarının lityum içeriği açısından değerlendirilmesi. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, 44 s.
  • Alamdari, A., Rahimpour, M.R., Esfandiari, N., Nourafkan, E., 2008. Kinetics of magnesium hydroxide precipitation from sea bittern. Chem Eng Process, 47,215-221.
  • Amarante, M.M., Botelho de Sousa, A., Leite, M.M., 1999. Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies. Miner. Eng., 12 (4), 433-436.
  • Amer, A.M., 2008. The hydrometallurgical extraction of lithium from Egyptian montmorillonite-type clay, JOM, 60(10), 55-57.
  • An, J.W., Kang, D.J., Tran, K.T., Kim, J., Lim, T., Tram, T., 2012. Recovery of lithium from Uyuni salar brine. Hydrometallurgy, 117-118, 64-70.
  • Atashi, H., Sarkari, M., Zeinali, M., Aliabadi, Z.H., 2010. Recovery of magnesium chloride from resulting potash unit concentrate case study: Iran Great Desert brine. Aust J Basic Appl Sci., 4(10), 4766-4771.
  • Aylmore, M.G., Merigot, K., Rickard, W.D.A., Evans, N.J., McDonald, B.J., Catovic, E., Spitalny, P., 2018. Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium. Miner. Eng., 119, 137-148.
  • Baird, T., Braterman, P.S., Cochrane, H.D., 1988. Magnesium hydroxide precipitation as studied by gel growth methods. J Cryst Growth, 91, 610-616.
  • Bale, M.D., May, A.V., 1989. Processing of ores to produce tantalum and lithium. Miner. Eng., 2, 299–320.
  • Barbosa, L.I., Gonzalez, J A., Ruiz, M.C., 2015. Extraction of lithium from β- spodumene using chlorination roasting with calcium chloride, Thermochimica Acta, 605, 63–67.
  • Barbosa, L.I., Valente, G., Orosco, R.P., González, J.A., 2014. Lithium extraction from β-spodumene through chlorination with chlorine gas, Miner. Eng., 56, 29-34. doi:10.1016/j.mineng.2013.10.026.
  • Barzegari, M.R., Ghorbankarimi, G., Saadati, H., Torshizian, H., 2016. Selective extraction of lithium from low-grade gypsiferous clays by reduction of calcium and magnesium content in the pregnant leach solution (PLS). Int. Acad. J. Sci. Eng., 3(4), 70-79.
  • Bertau, M., Voigt, W., Schneider, A., Martin, G., 2017. Lithium recovery from challenging deposits: Zinnwaldite and magnesium-rich salt Lake brines. ChemBioEng Reviews, 4(6), 360-376.
  • Botula, J., Rucký, P., Řepka, V., 2005. Extraction of zinnwaldite from mining and processing wastes, Min. Geol. Ser., 2, 9-16. Brand, F., Haus, R., 2010. New concepts for lithium minerals processing. Min Eng., 23, 659-661.
  • British Geological Survey. 2016. Mineral profile-Lithium.
  • Bulatovic, S.M., 2015. Beneficiation of lithium ores. Handbook of Flotation Reagents: Chemistry, Theory and Practice, 41-56.
  • Büyükburç, A., 2003. Lityum: Gelecekte önemi artacak mı?, Madencilik Bülteni, Sayı 66, Eti Holding AR-GE Daire Başkanlığı, Haziran.
  • Büyükburç, A., Köksal, G. 2005. An attempt to minimize the cost of extracting lithium from boron clays through robust process design. Clays and Clay Minerals, 53(3), 301-309.
  • Büyükburç, A., Maraşlıoğlu, D. 2003. Bor cevher ve yankayaçlarında lityum içeriğinin değerlendirme olanaklarının araştırılması. Proje No: 2003.C.11.0010. Eti Maden İşletmeleri Teknoloji Geliştirme Dairesi Başkanlığı.
  • Büyükburç, A., Maraşlıoğlu, D., Bilici, M.S.U., Köksal, G., 2006. Extraction of lithium from boron clays by using natural and waste materials and statistical modelling to achieve cost reduction. Miner. Eng., 19(5), 515-517.
  • Carson, R.C., Simandl, J., 1994. Kinetics of magnesium hydroxide precipitation from sea water using slaked dolomite. Min Eng., 7(4), 511-517.
  • Chagnes, A., Swiatowska, J., 2015. Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling, Elsevier, s.305.
  • Chen, Y., Tian, Q., Chen, B., Shi, X., Liao, T., 2011. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process, Hydrometallurgy 109(1-2), 43-46.
  • Choi, J., Kim, W., Chae, W., Kim, S.B., Kim, H., 2012. Electrostatically controlled enrichment of lepidolite via flotation. Mater. Trans., 53, 2191-2194.
  • Choubey, P.K., Kim, M.-S., Srivastava, R.R., Lee, J.-C., Lee, J.-Y., 2016. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources, Miner. Eng., 89,119-137.
  • Christmann, P., Gloaguen, E., Labbe, J-F., Melleton, J., Piantone, P., 2015. Global Lithium Resources and Sustainability Issues, Chapter 1, 1-40, In Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling, Chagnes, A., Swiatowska, J., Elsevier, s.305.
  • Comision Chilena del Cobre (COCHILCO), 2013. Compilacion de informes sobre el mercado internacional del litio y el potencial de litio en salares del Norte de Chile. Santiago de Chile (Chile): COCHILCO. Available online: http://www.minmineria.gob.cl/wp-content/themes/minmineria/documentos/InformeLi.pdf.
  • Crocker L, Lien RH, May JT, Witkowsky DS, Seidel DC., 1988. Lithium and its recovery from low-grade Nevada clays. Bureau of Mines, US Department of the Interior, Bulletin 691.
  • Dalini, E.A., Karimia, Gh., Zandevakili, S., Goodarzic, M., 2020. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries, Min. Proc. Ext. Met. Rev., https://doi.org/10.1080/08827508.2020.1781628.
  • Distin, P.A., Phillips, C.V., 1982. The acid extraction of lithium from the granites of South West England. Hydrometallurgy, 9(1), 1-14.
  • EC, 2020. Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability, Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions, Bürüksel, 3.9.2020, Final Raporu, https://ec.europa.eu/docsroom/documents/42849
  • Eti Maden, 2010. Kırka killerinden lityum karbonat üretilmesi, Eti Maden İşletmeleri Teknoloji Geliştirme Dairesi Başkanlığı.
  • Evans, K.R., 2014. Lithium-Chapter 10. In: Gunn G, editor. 2014-Critical metals handbook. Hoboken (New Jersey, USA), Wiley-Blackwell; 2014.
  • Gabra, G., Torma, A., Olivier, C., 1975. Pressure leaching of beta-spodumene by sodium chloride, Can. Metall. Q., 14(4), 355-359.
  • Gibson, C., Aghamirian, M., Grammatikopoulos, T., 2017. A review: the benefication of lithium minerals from hard rock deposits, SME Annual Meeting Feb., 19-22, Denver, CO.
  • Grey, C.P., Tarascon, J.M., 2017. Sustainability and in situ monitoring in battery development. Nat. Mater., 16(1), 45-56.
  • Griffith, C.S., Griffin, A.C., Roper, A., Skalski, A., 2018. Development of SiLeach® Technology for the Extraction of Lithium Silicate Minerals. Extraction 2018. Springer International Publishing, Cham, 2235-2245.
  • Guo, H., Kuang, G., Wan, H., Yang, Y., Yu, H., Wang, H., 2019a. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method, Hydrometallurgy, 183, 9-19.
  • Guo, H., Kuang, G., Wang, H., Yu, H., Zhao, X., 2017. Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid, Minerals, 7, 205, doi:10.3390/min7110205.
  • Guo, H., Yu, H., Zhou, A., Lu, M., Wang, Q., Kuang, G., Wang, H., 2019b. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium, Trans. Nonferrous Metals Soc. China, 29(2), 407-415.
  • Guo, Y., Li, F., Zhu, H., Li, G., Huang, J., He,W., 2016. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Manag. 51, 227-233.
  • Helvacı, C., 2018. Lityum ve lityum minerallerinin kaynakları, yatakların dağılımı ve ekonomik önemi, 71. Türkiye Jeoloji Kurultayı, 23-27 Nisan 2018.
  • Helvacı, C., Mordoğan, H., Çolak, M., Gündoğan, I., 2003. Presence and distribution of lithium in borate deposits and some recent lake waters of west-central Turkey, International Geology Review, 46(2), 177-190.
  • Henrist, C., Mathieu, J.P., Vogels, C., Rulmont, A., Cloots, R., 2003. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J Cryst Growth, 249, 321-330.
  • Hıncalan, E. B. 2010. Bor endüstri atıklarındaki lityumun adsorpsiyon yöntemi ile kazanılması. Yüksek Lisans Tezi, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, s.66.
  • Hien-Dinh, T.T., Luong, V.T., Gieré, R., Tran, T., 2015. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching. Hydrometallurgy, 153, 154-159.
  • Hu, Z., Qi, L., 2014. Sample digestion methods, in treatise on geochemistry, Elsevier, 2nd Edition http://dx.doi.org/10.1016/B978-0-08-095975-7.01406-6.
  • Jandova, J., Dvorak, P., Vu, H.N., 2010. Processing of zinnwaldite waste to obtain Li2CO3, Hydrometallurgy, 103,12-18. doi:10.1016/j.hydromet.2010.02.010.
  • Jandová, J., Vu, H.N., Belková, T., Dvořák, T., Kondás, J., 2009. Obtaining Li2CO3 from zinnwaldite wastes. Ceramics-Silikáty, 53(2), 108-112.
  • Karidakis, T., Agatzini-Leonardou, S., Neou-Syngouna, P., 2005. Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material. Hydrometallurgy,76,105-114.
  • Karrech, A., Azadia, M.R., Elchalakania, M., Shahinb, M.A., Seibi, A.C., 2020. A review on methods for liberating lithium from pegmatities, Minerals Engineering, 145, 106085.
  • Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P., Wallington, T.J., 2012. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol Rev., 48, 55-69.
  • Kluksdahl, H.E., 1986. Chevron Research Company, assignee. Extraction of lithium from lithiumcontaining materials, US patent 4588566.
  • Kuang, G., Chen, Z.B., Guo, H., Li, M.H., 2012. Lithium extraction mechanism from α-Spodumene by fluorine chemical method. Adv. Mater. Res., 524-527, 2011-2016.
  • Kuang, G., Liu, Y., Li, H., Xing, S., Li, F., Guo, H., 2018. Extraction of lithium from β-spodumene using sodium sulfate solution, Hydrometallurgy, 177, 49–56.
  • Laferrière, A., Dessureault, Y., Skiadas, N., Gary, H.K., Pearse, A. L., 2012. NI 43-101 Technical Report: Preliminary Economic Assessment of the Whabouchi Lithium Deposit and Hydromet Plant, doi:10.1094/PDIS-11-11-0999-PDN. Lee, J., 2015. Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching. Minerals, 5 (4), 737-743.
  • Li, H., Eksteen, J., Kuang, G., 2019. Recovery of lithium from mineral resources: State-of-the-art and perspectives-A review, Hydrometallurgy, 189, 105-129.
  • Lien, R.H., 1985. Recovery of lithium from a Montmorillonite-type clay. Bureau of Mines, Report of Investigations RI 8967. Liu, C., Lin, J., Cao, H., Zhang, Y., Sun, Z., 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production, 228, 801-813.
  • Luong, V.T., Kang, D.J., An, J.W., Dao, D.A., Kim, M.J., Tran, T., 2014. Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy, 141, 8-16.
  • Luong, V.T., Kang, D.J., An, J.W., Kim, M.J., Tran, T., 2013. Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy, 134-135, 54-61.
  • Margarido, F., Vieceli, N., Durao, F., Guimaraes, C., Nogueira, C.A., 2014. Minero-metallurgical processes for lithium recovery from pegmatitic ores, Comunicacoes Geologicas, 101, 795-798.
  • Martin, G., Patzold, C., Bertau, M., 2017b. Integrated process for lithium recovery from zinnwaldite. Int. J. Miner. Process., 160, 8-15.
  • Martin, G., Rentsch, L., Hoeck, M., Bertau, M., 2017a. Lithium market research-global supply, future demand and price development. Energy Storage Mater., 6, 171-179.
  • Martin, G., Schneider, A., Voigt, W., Bertau, M., 2017c. Lithium extraction from the mineral zinnwaldite: part II: Lithium carbonate recovery by direct carbonation of sintered zinnwaldite concentrate. Miner. Eng., 110, 75-81.
  • Medina, L.F., El-Naggar, M.M.A.A., 1984. An alternative method for the recovery of lithium from spodumene. Metallurgical Transactions B, 15(4), 725-726. https://doi.org/10.1007/BF02657295.
  • Meshram, P., Pandey, B.D., Mankhand, T.R., 2014. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192-208.
  • Moon, K.S., Fuerstenau, D.W., 2003. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates. Int. J. Miner. Process., 72, 11-24.
  • Mordoğan, H. ve Helvacı, C., 1994. Bor Yataklarındaki Killer ile Bazı Güncel Göl Sularındaki Lityum Varlığı ve Dağılımı Yerbilimleri, 25, 185-192.
  • Mordoğan, H., Helvacı, C., Malayoğlu, U. 1995. Bor yatakları killeri ve güncel göllerdeki lityum varlığı ve değerlendirme olanakları. Endüstriyel Hammaddeler Sempozyumu, 21-22 Nisan, İzmir.
  • Obut, A., Ehsani, İ., Aktosun, Z., Yörükoğlu, A., Girgin, İ., Temel, A., Deveci, H., 2020. Leaching behaviour of lithium, cesium and rubidium from a clay sample of Kırka borate deposit in sulfuric acid solutions, BORON, 5(4), 170-175.
  • Özder, E., 2013. Bigadiç bor endüstri atıklarının değerlendirilmesi. Doktora Tezi, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilimdalı, s.144.
  • Rosales, G.D., Pinna, E.G., Suarez, D.S., Rodriguez, M.H., 2017. Recovery process of Li, Al and Si from Lepidolite by leaching with HF, Minerals, 7(3), 36.
  • Rosales, G.D., Ruiz, d.C., Rodriguez, M.H., 2014. Novel process for the extraction of lithium from β-spodumene by leaching with HF. Hydrometallurgy, 147, 1–6.
  • Rosales, G.D., Ruiz, M.C., Rodriguez, M.H., 2016. Study of the extraction kinetics ofLithium by leaching β-Spodumene with hydrofluoric acid, Minerals, 6(4), 98.
  • Salakjani, N. K., P. Singh, and A. N. Nikoloski. 2019c. Acid roasting of spodumene: Microwave vs. conventional heating. Minerals Engineering, 138, 161-67. doi:10.1016/j.mineng.2019.05.003.
  • Salakjani, N.K., Nikoloski, A.N., Singh, P., 2017. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 2: microwave heating. Miner. Eng., 100, 191-199.
  • Salakjani, N.K., Singh, P., Nikoloski, A.N., 2016. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 1: conventional heating. Miner. Eng., 98, 71-79.
  • Santos, L.L.D., Nascimento, R.M.D., Pergher, S.B.C., 2019. Beta spodumene: Na2CO3: NaCl system calcination: A kinetic study of the conversion to lithium salt, Chemical Engineering Research and Design, 147:338–45. doi:10.1016/j.cherd.2019.05.019.
  • Schneider, A., Schmidt, H., Meven, M., Brendler, E., Kirchner, J., Martin, G., Bertau, M., Voigt, W., 2017. Lithium extraction from the mineral zinnwaldite: part I: effect of thermal treatment on properties and structure of zinnwaldite. Miner. Eng., 111,55-67.
  • Siame, E., Pascoe, R.D., 2011. Extraction of lithium from micaceous waste from china clay production. Miner. Eng., 24, 1595-1602.
  • Sitando, O., Crouse, P.L., 2012. Processing of a Zimbabwean petalite to obtained lithium carbonate, Int. J. Miner. Process., 102-103, 45-50.
  • Starkey, HC., 1982. The role of clays in fixing lithium. Geological Survey Bulletin 1278-F. Washington: US Government Printing Office.
  • Sugyeong, L., 2018. Extraction of Lithium from Spodumene by Alkali Fusion. Seoul National University Retrieved from. http://s-space.snu.ac.kr/bitstream/10371/143846/1/000000152139.pdf, Erişim tarihi: 16 Nisan 2020.
  • Swain, B., 2017. Recovery and recycling of lithium: A review, Separation and Purification Technology, 172, 388-403 Swiatowska, J., Barboux, P., 2015. Lithium Battery Technologies: From the Electrodes to the Batteries, In Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling, Chagnes, A., Swiatowska, J., Elsevier, s.305.
  • Tadesse, B., Makuei, F., Albijanic, B., Dyer, L., 2019. The beneficiation of lithium minerals from hard rock ores: A review, Miner. Eng., 131, 170-184.
  • Tektaş, E., İnal, Y., Karaçay, E. 2010. Kalsine Tinkal Atığından Lityumun Kazanılması Çalışma Raporu. Eti Maden İşletmeleri Teknoloji Geliştirme Dairesi Başkanlığı.
  • Tiihonen, M., Haavanlammi, L., Kinnunen, S., Kolehmainen, E., 2019. Outotec lithium hydroxide process - a novel direct leach process for the production of battery grade lithium hydroxide monohydrate from calcined spodumene. In: Proceedings of ALTA 2019. ALTA Metallurgical Services, Perth, Australia.
  • Tran, T., Van T. Luong. 2015. Chapter 3 - Lithium production processes, Lithium process chemistry: Resources, extraction, batteries, and recycling. Changes A. and Światowska J. ed., 1st Edition. Elsevier Science, 81-124.
  • Turek, M., Gnot, W., 1995. Precipitation of magnesium hydroxide from brine. Ind Eng Chem Res., 34, 244-250.
  • Ulusoy, M. 2016. Geleceğin petrolü lityum mu?, Metalurji, 178, 45-48.
  • USGS 2021. Mineral Commodity Summaries, U.S. Department of the Interior, U.S. Geological Survey, https://www.usgs.gov/centers/nmic/mineral-commodity-summaries, Erişim Tarihi, 05.05.2021.
  • Vieceli, N., Durao, F.O., Guimaraes, C., Nogueira, C.A., Pereira, M.F.C., Margarido, F., 2016. Kinetic approach to the study of froth flotation applied to a lepidolite ore. Int. J. Miner. Metall. Mater., 23, 731-742.
  • Vieceli, N., Nogueira, C.A., Pereira, M.F.C., Dias, A.P.S., Durão, F.O., Guimarães, C., Margarido, F., 2017a. Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate. Miner. Eng., 102, 1-14.
  • Vieceli, N., Nogueira, C.A., Pereira, M.F.C., Durão, F.O., Guimarães, C., Margarido, F., 2016. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates, Miner. Process. Extr. Metall. Rev., 38(1), 62-72.
  • Vieceli, N., Nogueira, C.A., Pereira, M.F.C., Durão, F.O., Guimarães, C., Margarido, F., 2017b. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates. Miner. Process. Extr. Metall. Rev., 38(1), 62-72.
  • Vikström, H., Davidsson, S., Höök, M., 2013. Lithium availability and future production outlooks. Appl. Energy 110, 252-266. Vu, H., Bernardi, J., Jandová, J., Vaculíková, L., Goliáš, V., 2013. Lithium and rubidium extraction from zinnwaldite by alkali digestion process: sintering mechanism and leaching kinetics, Int. J. Miner. Process., 123, 9-17.
  • Wietelmann, U., Bauer, R.J., 2012. Lithium and lithium compounds. Vol. 21, In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 339-366.
  • Wilson, M., Cabrera, J.G., Zou, Y., 1994. The process and mechanism of alkali-silica reaction using fused silica as the reactive aggregate. Adv. Cem. Res., 6(23), 117-125.
  • Wu, X., Yi, Z., Li, X., Wang, Z., Guo, H., 2012. Extraction of lithium and potassium from Yichun lepidolite by chloridizing roasting. Mining Metallurg. Eng., 32(3), 95-98.
  • Xing, P., Wang, C., Zeng, L., Ma, B., Wang, L., Chen, Y., Yang, C., 2019. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene, ACS Sustain. Chem. Eng. 7, 9498-9505.
  • Yan, Q., Li, X., Wang, Z., Wu, X., Guo, H., Hu, Q., Peng, W., Wang, J., 2012a. Extraction of valuable metals from lepidolite. Hydrometallurgy, 116-18. doi:10.1016/j.hydromet.2012.02.004.
  • Yan, Q., Li, X., Wang, Z., Wu, X., Wang, J., Guo, H., Hu, Q., Peng, W., 2012b. Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110-111, :1-5. doi:10.1016/j.minpro.2012.03.005.
  • Yan, Q., Li, X., Yin, Z., Wang, Z., Guo, H., Peng, W., Hu, Q., 2012c. A novel process for extracting lithium from lepidolite. Hydrometallurgy, 121-124, 54-59. doi:10.1016/j.hydromet.2012.04.006.
  • Yan, Q., Li, X.,Wang, Z.,Wang, J.X., Guo, H., Hu, Q., Peng,W.,Wu, X.F., 2012d. Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Trans. Nonferrous Metals Soc. China, 22(7), 1753-1759.
  • Yelatontsev, D., Mukhachev, A., 2021. Processing of lithium ores: Industrial technologies and case studies-A review, Hydrometallurgy, 01, 105578.
  • Yörükoğlu, A., Akkurt, F., Karakaş, S., Özkasapoğlu, S., 2019. Recovery of Lithium from Boron Wastes and Its Economical Evaluation, IMPC Eurasia Conference, 31 Ekim-2 Kasım 2019 Antalya,Türkiye, s.4.
  • Zbranek V, Bertolli S, Vargas P., 2013. Western Lithium Corporation, assignee. Production of lithium and potassium compounds, US patent 8431005.
  • Zeelikman, A.N., Krein, O.E., Samsonov, G.V., 1966. Metallurgy of Rare Metals. Israel Program for Scientific Translations, Jerusalem.
  • Zhang, X., Tan, X., Li, C., Yi, Y., Liu, W., Zhang, L., 2019. Energy-efficient and simultaneous extraction of lithium, rubidium and caesium from lepidolite concentrate via sulfuric acid baking and water leaching, Hydrometallurgy, 185, 244-249.

Recovery of lithium from ores and brines

Year 2022, Volume: 61 Issue: 2, 105 - 120, 26.06.2022
https://doi.org/10.30797/madencilik.1010286

Abstract

Due to its different properties (low electrode potential and specific heat capacity), lithium is widely used in many industries (battery, ceramic and glass industry, lubricating greases, polymer, metallurgy, air treatment). In recent years, due to the developing technology, the demand for lithium has increased with its use in new fields (electric vehicles, grid storage). Therefore, lithium has been included in the critical raw materials list by the European Union Commission. Lithium production is mostly carried out from brines and ores (i.e. such as spodumen, lepidolite, zinvaldite, ambligonite, pedalite). Also, in resent years, it is produced from secondary sources such as lithium ion batteries. Lithium recovery from ores or concentrates such as spodumen is commonly accomplished by the sulfuric acid/roasting process. In this study, the importance of lithium as a critical raw material, resource potential of lithium in the world and Turkey, and industrial processes for production of lithium from ores/brines are reviewed in detail. Previous studies on the recovery of lithium from ores and brines are discussed. In addition, process flowsheets of various industrial plants for the recovery of lityum in the world are presented.

References

  • Aghamirian, M., Mohs, C., Grammatikopoulos, T., Imeson, D., Pearse, G., 2012. An overview of spodumene beneficiation. In: 44th Annual Canadian Mineral Processors Operators’ Conference, 141-153.
  • Akyıldız, S. 2015. Kırka boraks madeni killerinin ve işletme atıklarının lityum içeriği açısından değerlendirilmesi. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, 44 s.
  • Alamdari, A., Rahimpour, M.R., Esfandiari, N., Nourafkan, E., 2008. Kinetics of magnesium hydroxide precipitation from sea bittern. Chem Eng Process, 47,215-221.
  • Amarante, M.M., Botelho de Sousa, A., Leite, M.M., 1999. Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies. Miner. Eng., 12 (4), 433-436.
  • Amer, A.M., 2008. The hydrometallurgical extraction of lithium from Egyptian montmorillonite-type clay, JOM, 60(10), 55-57.
  • An, J.W., Kang, D.J., Tran, K.T., Kim, J., Lim, T., Tram, T., 2012. Recovery of lithium from Uyuni salar brine. Hydrometallurgy, 117-118, 64-70.
  • Atashi, H., Sarkari, M., Zeinali, M., Aliabadi, Z.H., 2010. Recovery of magnesium chloride from resulting potash unit concentrate case study: Iran Great Desert brine. Aust J Basic Appl Sci., 4(10), 4766-4771.
  • Aylmore, M.G., Merigot, K., Rickard, W.D.A., Evans, N.J., McDonald, B.J., Catovic, E., Spitalny, P., 2018. Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium. Miner. Eng., 119, 137-148.
  • Baird, T., Braterman, P.S., Cochrane, H.D., 1988. Magnesium hydroxide precipitation as studied by gel growth methods. J Cryst Growth, 91, 610-616.
  • Bale, M.D., May, A.V., 1989. Processing of ores to produce tantalum and lithium. Miner. Eng., 2, 299–320.
  • Barbosa, L.I., Gonzalez, J A., Ruiz, M.C., 2015. Extraction of lithium from β- spodumene using chlorination roasting with calcium chloride, Thermochimica Acta, 605, 63–67.
  • Barbosa, L.I., Valente, G., Orosco, R.P., González, J.A., 2014. Lithium extraction from β-spodumene through chlorination with chlorine gas, Miner. Eng., 56, 29-34. doi:10.1016/j.mineng.2013.10.026.
  • Barzegari, M.R., Ghorbankarimi, G., Saadati, H., Torshizian, H., 2016. Selective extraction of lithium from low-grade gypsiferous clays by reduction of calcium and magnesium content in the pregnant leach solution (PLS). Int. Acad. J. Sci. Eng., 3(4), 70-79.
  • Bertau, M., Voigt, W., Schneider, A., Martin, G., 2017. Lithium recovery from challenging deposits: Zinnwaldite and magnesium-rich salt Lake brines. ChemBioEng Reviews, 4(6), 360-376.
  • Botula, J., Rucký, P., Řepka, V., 2005. Extraction of zinnwaldite from mining and processing wastes, Min. Geol. Ser., 2, 9-16. Brand, F., Haus, R., 2010. New concepts for lithium minerals processing. Min Eng., 23, 659-661.
  • British Geological Survey. 2016. Mineral profile-Lithium.
  • Bulatovic, S.M., 2015. Beneficiation of lithium ores. Handbook of Flotation Reagents: Chemistry, Theory and Practice, 41-56.
  • Büyükburç, A., 2003. Lityum: Gelecekte önemi artacak mı?, Madencilik Bülteni, Sayı 66, Eti Holding AR-GE Daire Başkanlığı, Haziran.
  • Büyükburç, A., Köksal, G. 2005. An attempt to minimize the cost of extracting lithium from boron clays through robust process design. Clays and Clay Minerals, 53(3), 301-309.
  • Büyükburç, A., Maraşlıoğlu, D. 2003. Bor cevher ve yankayaçlarında lityum içeriğinin değerlendirme olanaklarının araştırılması. Proje No: 2003.C.11.0010. Eti Maden İşletmeleri Teknoloji Geliştirme Dairesi Başkanlığı.
  • Büyükburç, A., Maraşlıoğlu, D., Bilici, M.S.U., Köksal, G., 2006. Extraction of lithium from boron clays by using natural and waste materials and statistical modelling to achieve cost reduction. Miner. Eng., 19(5), 515-517.
  • Carson, R.C., Simandl, J., 1994. Kinetics of magnesium hydroxide precipitation from sea water using slaked dolomite. Min Eng., 7(4), 511-517.
  • Chagnes, A., Swiatowska, J., 2015. Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling, Elsevier, s.305.
  • Chen, Y., Tian, Q., Chen, B., Shi, X., Liao, T., 2011. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process, Hydrometallurgy 109(1-2), 43-46.
  • Choi, J., Kim, W., Chae, W., Kim, S.B., Kim, H., 2012. Electrostatically controlled enrichment of lepidolite via flotation. Mater. Trans., 53, 2191-2194.
  • Choubey, P.K., Kim, M.-S., Srivastava, R.R., Lee, J.-C., Lee, J.-Y., 2016. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources, Miner. Eng., 89,119-137.
  • Christmann, P., Gloaguen, E., Labbe, J-F., Melleton, J., Piantone, P., 2015. Global Lithium Resources and Sustainability Issues, Chapter 1, 1-40, In Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling, Chagnes, A., Swiatowska, J., Elsevier, s.305.
  • Comision Chilena del Cobre (COCHILCO), 2013. Compilacion de informes sobre el mercado internacional del litio y el potencial de litio en salares del Norte de Chile. Santiago de Chile (Chile): COCHILCO. Available online: http://www.minmineria.gob.cl/wp-content/themes/minmineria/documentos/InformeLi.pdf.
  • Crocker L, Lien RH, May JT, Witkowsky DS, Seidel DC., 1988. Lithium and its recovery from low-grade Nevada clays. Bureau of Mines, US Department of the Interior, Bulletin 691.
  • Dalini, E.A., Karimia, Gh., Zandevakili, S., Goodarzic, M., 2020. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries, Min. Proc. Ext. Met. Rev., https://doi.org/10.1080/08827508.2020.1781628.
  • Distin, P.A., Phillips, C.V., 1982. The acid extraction of lithium from the granites of South West England. Hydrometallurgy, 9(1), 1-14.
  • EC, 2020. Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability, Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions, Bürüksel, 3.9.2020, Final Raporu, https://ec.europa.eu/docsroom/documents/42849
  • Eti Maden, 2010. Kırka killerinden lityum karbonat üretilmesi, Eti Maden İşletmeleri Teknoloji Geliştirme Dairesi Başkanlığı.
  • Evans, K.R., 2014. Lithium-Chapter 10. In: Gunn G, editor. 2014-Critical metals handbook. Hoboken (New Jersey, USA), Wiley-Blackwell; 2014.
  • Gabra, G., Torma, A., Olivier, C., 1975. Pressure leaching of beta-spodumene by sodium chloride, Can. Metall. Q., 14(4), 355-359.
  • Gibson, C., Aghamirian, M., Grammatikopoulos, T., 2017. A review: the benefication of lithium minerals from hard rock deposits, SME Annual Meeting Feb., 19-22, Denver, CO.
  • Grey, C.P., Tarascon, J.M., 2017. Sustainability and in situ monitoring in battery development. Nat. Mater., 16(1), 45-56.
  • Griffith, C.S., Griffin, A.C., Roper, A., Skalski, A., 2018. Development of SiLeach® Technology for the Extraction of Lithium Silicate Minerals. Extraction 2018. Springer International Publishing, Cham, 2235-2245.
  • Guo, H., Kuang, G., Wan, H., Yang, Y., Yu, H., Wang, H., 2019a. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method, Hydrometallurgy, 183, 9-19.
  • Guo, H., Kuang, G., Wang, H., Yu, H., Zhao, X., 2017. Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid, Minerals, 7, 205, doi:10.3390/min7110205.
  • Guo, H., Yu, H., Zhou, A., Lu, M., Wang, Q., Kuang, G., Wang, H., 2019b. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium, Trans. Nonferrous Metals Soc. China, 29(2), 407-415.
  • Guo, Y., Li, F., Zhu, H., Li, G., Huang, J., He,W., 2016. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Manag. 51, 227-233.
  • Helvacı, C., 2018. Lityum ve lityum minerallerinin kaynakları, yatakların dağılımı ve ekonomik önemi, 71. Türkiye Jeoloji Kurultayı, 23-27 Nisan 2018.
  • Helvacı, C., Mordoğan, H., Çolak, M., Gündoğan, I., 2003. Presence and distribution of lithium in borate deposits and some recent lake waters of west-central Turkey, International Geology Review, 46(2), 177-190.
  • Henrist, C., Mathieu, J.P., Vogels, C., Rulmont, A., Cloots, R., 2003. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J Cryst Growth, 249, 321-330.
  • Hıncalan, E. B. 2010. Bor endüstri atıklarındaki lityumun adsorpsiyon yöntemi ile kazanılması. Yüksek Lisans Tezi, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, s.66.
  • Hien-Dinh, T.T., Luong, V.T., Gieré, R., Tran, T., 2015. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching. Hydrometallurgy, 153, 154-159.
  • Hu, Z., Qi, L., 2014. Sample digestion methods, in treatise on geochemistry, Elsevier, 2nd Edition http://dx.doi.org/10.1016/B978-0-08-095975-7.01406-6.
  • Jandova, J., Dvorak, P., Vu, H.N., 2010. Processing of zinnwaldite waste to obtain Li2CO3, Hydrometallurgy, 103,12-18. doi:10.1016/j.hydromet.2010.02.010.
  • Jandová, J., Vu, H.N., Belková, T., Dvořák, T., Kondás, J., 2009. Obtaining Li2CO3 from zinnwaldite wastes. Ceramics-Silikáty, 53(2), 108-112.
  • Karidakis, T., Agatzini-Leonardou, S., Neou-Syngouna, P., 2005. Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material. Hydrometallurgy,76,105-114.
  • Karrech, A., Azadia, M.R., Elchalakania, M., Shahinb, M.A., Seibi, A.C., 2020. A review on methods for liberating lithium from pegmatities, Minerals Engineering, 145, 106085.
  • Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P., Wallington, T.J., 2012. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol Rev., 48, 55-69.
  • Kluksdahl, H.E., 1986. Chevron Research Company, assignee. Extraction of lithium from lithiumcontaining materials, US patent 4588566.
  • Kuang, G., Chen, Z.B., Guo, H., Li, M.H., 2012. Lithium extraction mechanism from α-Spodumene by fluorine chemical method. Adv. Mater. Res., 524-527, 2011-2016.
  • Kuang, G., Liu, Y., Li, H., Xing, S., Li, F., Guo, H., 2018. Extraction of lithium from β-spodumene using sodium sulfate solution, Hydrometallurgy, 177, 49–56.
  • Laferrière, A., Dessureault, Y., Skiadas, N., Gary, H.K., Pearse, A. L., 2012. NI 43-101 Technical Report: Preliminary Economic Assessment of the Whabouchi Lithium Deposit and Hydromet Plant, doi:10.1094/PDIS-11-11-0999-PDN. Lee, J., 2015. Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching. Minerals, 5 (4), 737-743.
  • Li, H., Eksteen, J., Kuang, G., 2019. Recovery of lithium from mineral resources: State-of-the-art and perspectives-A review, Hydrometallurgy, 189, 105-129.
  • Lien, R.H., 1985. Recovery of lithium from a Montmorillonite-type clay. Bureau of Mines, Report of Investigations RI 8967. Liu, C., Lin, J., Cao, H., Zhang, Y., Sun, Z., 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production, 228, 801-813.
  • Luong, V.T., Kang, D.J., An, J.W., Dao, D.A., Kim, M.J., Tran, T., 2014. Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy, 141, 8-16.
  • Luong, V.T., Kang, D.J., An, J.W., Kim, M.J., Tran, T., 2013. Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy, 134-135, 54-61.
  • Margarido, F., Vieceli, N., Durao, F., Guimaraes, C., Nogueira, C.A., 2014. Minero-metallurgical processes for lithium recovery from pegmatitic ores, Comunicacoes Geologicas, 101, 795-798.
  • Martin, G., Patzold, C., Bertau, M., 2017b. Integrated process for lithium recovery from zinnwaldite. Int. J. Miner. Process., 160, 8-15.
  • Martin, G., Rentsch, L., Hoeck, M., Bertau, M., 2017a. Lithium market research-global supply, future demand and price development. Energy Storage Mater., 6, 171-179.
  • Martin, G., Schneider, A., Voigt, W., Bertau, M., 2017c. Lithium extraction from the mineral zinnwaldite: part II: Lithium carbonate recovery by direct carbonation of sintered zinnwaldite concentrate. Miner. Eng., 110, 75-81.
  • Medina, L.F., El-Naggar, M.M.A.A., 1984. An alternative method for the recovery of lithium from spodumene. Metallurgical Transactions B, 15(4), 725-726. https://doi.org/10.1007/BF02657295.
  • Meshram, P., Pandey, B.D., Mankhand, T.R., 2014. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192-208.
  • Moon, K.S., Fuerstenau, D.W., 2003. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates. Int. J. Miner. Process., 72, 11-24.
  • Mordoğan, H. ve Helvacı, C., 1994. Bor Yataklarındaki Killer ile Bazı Güncel Göl Sularındaki Lityum Varlığı ve Dağılımı Yerbilimleri, 25, 185-192.
  • Mordoğan, H., Helvacı, C., Malayoğlu, U. 1995. Bor yatakları killeri ve güncel göllerdeki lityum varlığı ve değerlendirme olanakları. Endüstriyel Hammaddeler Sempozyumu, 21-22 Nisan, İzmir.
  • Obut, A., Ehsani, İ., Aktosun, Z., Yörükoğlu, A., Girgin, İ., Temel, A., Deveci, H., 2020. Leaching behaviour of lithium, cesium and rubidium from a clay sample of Kırka borate deposit in sulfuric acid solutions, BORON, 5(4), 170-175.
  • Özder, E., 2013. Bigadiç bor endüstri atıklarının değerlendirilmesi. Doktora Tezi, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilimdalı, s.144.
  • Rosales, G.D., Pinna, E.G., Suarez, D.S., Rodriguez, M.H., 2017. Recovery process of Li, Al and Si from Lepidolite by leaching with HF, Minerals, 7(3), 36.
  • Rosales, G.D., Ruiz, d.C., Rodriguez, M.H., 2014. Novel process for the extraction of lithium from β-spodumene by leaching with HF. Hydrometallurgy, 147, 1–6.
  • Rosales, G.D., Ruiz, M.C., Rodriguez, M.H., 2016. Study of the extraction kinetics ofLithium by leaching β-Spodumene with hydrofluoric acid, Minerals, 6(4), 98.
  • Salakjani, N. K., P. Singh, and A. N. Nikoloski. 2019c. Acid roasting of spodumene: Microwave vs. conventional heating. Minerals Engineering, 138, 161-67. doi:10.1016/j.mineng.2019.05.003.
  • Salakjani, N.K., Nikoloski, A.N., Singh, P., 2017. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 2: microwave heating. Miner. Eng., 100, 191-199.
  • Salakjani, N.K., Singh, P., Nikoloski, A.N., 2016. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 1: conventional heating. Miner. Eng., 98, 71-79.
  • Santos, L.L.D., Nascimento, R.M.D., Pergher, S.B.C., 2019. Beta spodumene: Na2CO3: NaCl system calcination: A kinetic study of the conversion to lithium salt, Chemical Engineering Research and Design, 147:338–45. doi:10.1016/j.cherd.2019.05.019.
  • Schneider, A., Schmidt, H., Meven, M., Brendler, E., Kirchner, J., Martin, G., Bertau, M., Voigt, W., 2017. Lithium extraction from the mineral zinnwaldite: part I: effect of thermal treatment on properties and structure of zinnwaldite. Miner. Eng., 111,55-67.
  • Siame, E., Pascoe, R.D., 2011. Extraction of lithium from micaceous waste from china clay production. Miner. Eng., 24, 1595-1602.
  • Sitando, O., Crouse, P.L., 2012. Processing of a Zimbabwean petalite to obtained lithium carbonate, Int. J. Miner. Process., 102-103, 45-50.
  • Starkey, HC., 1982. The role of clays in fixing lithium. Geological Survey Bulletin 1278-F. Washington: US Government Printing Office.
  • Sugyeong, L., 2018. Extraction of Lithium from Spodumene by Alkali Fusion. Seoul National University Retrieved from. http://s-space.snu.ac.kr/bitstream/10371/143846/1/000000152139.pdf, Erişim tarihi: 16 Nisan 2020.
  • Swain, B., 2017. Recovery and recycling of lithium: A review, Separation and Purification Technology, 172, 388-403 Swiatowska, J., Barboux, P., 2015. Lithium Battery Technologies: From the Electrodes to the Batteries, In Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling, Chagnes, A., Swiatowska, J., Elsevier, s.305.
  • Tadesse, B., Makuei, F., Albijanic, B., Dyer, L., 2019. The beneficiation of lithium minerals from hard rock ores: A review, Miner. Eng., 131, 170-184.
  • Tektaş, E., İnal, Y., Karaçay, E. 2010. Kalsine Tinkal Atığından Lityumun Kazanılması Çalışma Raporu. Eti Maden İşletmeleri Teknoloji Geliştirme Dairesi Başkanlığı.
  • Tiihonen, M., Haavanlammi, L., Kinnunen, S., Kolehmainen, E., 2019. Outotec lithium hydroxide process - a novel direct leach process for the production of battery grade lithium hydroxide monohydrate from calcined spodumene. In: Proceedings of ALTA 2019. ALTA Metallurgical Services, Perth, Australia.
  • Tran, T., Van T. Luong. 2015. Chapter 3 - Lithium production processes, Lithium process chemistry: Resources, extraction, batteries, and recycling. Changes A. and Światowska J. ed., 1st Edition. Elsevier Science, 81-124.
  • Turek, M., Gnot, W., 1995. Precipitation of magnesium hydroxide from brine. Ind Eng Chem Res., 34, 244-250.
  • Ulusoy, M. 2016. Geleceğin petrolü lityum mu?, Metalurji, 178, 45-48.
  • USGS 2021. Mineral Commodity Summaries, U.S. Department of the Interior, U.S. Geological Survey, https://www.usgs.gov/centers/nmic/mineral-commodity-summaries, Erişim Tarihi, 05.05.2021.
  • Vieceli, N., Durao, F.O., Guimaraes, C., Nogueira, C.A., Pereira, M.F.C., Margarido, F., 2016. Kinetic approach to the study of froth flotation applied to a lepidolite ore. Int. J. Miner. Metall. Mater., 23, 731-742.
  • Vieceli, N., Nogueira, C.A., Pereira, M.F.C., Dias, A.P.S., Durão, F.O., Guimarães, C., Margarido, F., 2017a. Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate. Miner. Eng., 102, 1-14.
  • Vieceli, N., Nogueira, C.A., Pereira, M.F.C., Durão, F.O., Guimarães, C., Margarido, F., 2016. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates, Miner. Process. Extr. Metall. Rev., 38(1), 62-72.
  • Vieceli, N., Nogueira, C.A., Pereira, M.F.C., Durão, F.O., Guimarães, C., Margarido, F., 2017b. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates. Miner. Process. Extr. Metall. Rev., 38(1), 62-72.
  • Vikström, H., Davidsson, S., Höök, M., 2013. Lithium availability and future production outlooks. Appl. Energy 110, 252-266. Vu, H., Bernardi, J., Jandová, J., Vaculíková, L., Goliáš, V., 2013. Lithium and rubidium extraction from zinnwaldite by alkali digestion process: sintering mechanism and leaching kinetics, Int. J. Miner. Process., 123, 9-17.
  • Wietelmann, U., Bauer, R.J., 2012. Lithium and lithium compounds. Vol. 21, In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 339-366.
  • Wilson, M., Cabrera, J.G., Zou, Y., 1994. The process and mechanism of alkali-silica reaction using fused silica as the reactive aggregate. Adv. Cem. Res., 6(23), 117-125.
  • Wu, X., Yi, Z., Li, X., Wang, Z., Guo, H., 2012. Extraction of lithium and potassium from Yichun lepidolite by chloridizing roasting. Mining Metallurg. Eng., 32(3), 95-98.
  • Xing, P., Wang, C., Zeng, L., Ma, B., Wang, L., Chen, Y., Yang, C., 2019. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene, ACS Sustain. Chem. Eng. 7, 9498-9505.
  • Yan, Q., Li, X., Wang, Z., Wu, X., Guo, H., Hu, Q., Peng, W., Wang, J., 2012a. Extraction of valuable metals from lepidolite. Hydrometallurgy, 116-18. doi:10.1016/j.hydromet.2012.02.004.
  • Yan, Q., Li, X., Wang, Z., Wu, X., Wang, J., Guo, H., Hu, Q., Peng, W., 2012b. Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110-111, :1-5. doi:10.1016/j.minpro.2012.03.005.
  • Yan, Q., Li, X., Yin, Z., Wang, Z., Guo, H., Peng, W., Hu, Q., 2012c. A novel process for extracting lithium from lepidolite. Hydrometallurgy, 121-124, 54-59. doi:10.1016/j.hydromet.2012.04.006.
  • Yan, Q., Li, X.,Wang, Z.,Wang, J.X., Guo, H., Hu, Q., Peng,W.,Wu, X.F., 2012d. Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Trans. Nonferrous Metals Soc. China, 22(7), 1753-1759.
  • Yelatontsev, D., Mukhachev, A., 2021. Processing of lithium ores: Industrial technologies and case studies-A review, Hydrometallurgy, 01, 105578.
  • Yörükoğlu, A., Akkurt, F., Karakaş, S., Özkasapoğlu, S., 2019. Recovery of Lithium from Boron Wastes and Its Economical Evaluation, IMPC Eurasia Conference, 31 Ekim-2 Kasım 2019 Antalya,Türkiye, s.4.
  • Zbranek V, Bertolli S, Vargas P., 2013. Western Lithium Corporation, assignee. Production of lithium and potassium compounds, US patent 8431005.
  • Zeelikman, A.N., Krein, O.E., Samsonov, G.V., 1966. Metallurgy of Rare Metals. Israel Program for Scientific Translations, Jerusalem.
  • Zhang, X., Tan, X., Li, C., Yi, Y., Liu, W., Zhang, L., 2019. Energy-efficient and simultaneous extraction of lithium, rubidium and caesium from lepidolite concentrate via sulfuric acid baking and water leaching, Hydrometallurgy, 185, 244-249.
There are 110 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Oktay Celep 0000-0001-9024-4196

Ersin Yener Yazıcı 0000-0002-8711-0784

Hacı Deveci 0000-0003-4105-0912

Publication Date June 26, 2022
Submission Date October 18, 2021
Published in Issue Year 2022 Volume: 61 Issue: 2

Cite

APA Celep, O., Yazıcı, E. Y., & Deveci, H. (2022). Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı. Bilimsel Madencilik Dergisi, 61(2), 105-120. https://doi.org/10.30797/madencilik.1010286
AMA Celep O, Yazıcı EY, Deveci H. Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı. Mining. June 2022;61(2):105-120. doi:10.30797/madencilik.1010286
Chicago Celep, Oktay, Ersin Yener Yazıcı, and Hacı Deveci. “Cevherlerden Ve Tuzlu Su kaynaklarından Lityum kazanımı”. Bilimsel Madencilik Dergisi 61, no. 2 (June 2022): 105-20. https://doi.org/10.30797/madencilik.1010286.
EndNote Celep O, Yazıcı EY, Deveci H (June 1, 2022) Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı. Bilimsel Madencilik Dergisi 61 2 105–120.
IEEE O. Celep, E. Y. Yazıcı, and H. Deveci, “Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı”, Mining, vol. 61, no. 2, pp. 105–120, 2022, doi: 10.30797/madencilik.1010286.
ISNAD Celep, Oktay et al. “Cevherlerden Ve Tuzlu Su kaynaklarından Lityum kazanımı”. Bilimsel Madencilik Dergisi 61/2 (June 2022), 105-120. https://doi.org/10.30797/madencilik.1010286.
JAMA Celep O, Yazıcı EY, Deveci H. Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı. Mining. 2022;61:105–120.
MLA Celep, Oktay et al. “Cevherlerden Ve Tuzlu Su kaynaklarından Lityum kazanımı”. Bilimsel Madencilik Dergisi, vol. 61, no. 2, 2022, pp. 105-20, doi:10.30797/madencilik.1010286.
Vancouver Celep O, Yazıcı EY, Deveci H. Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı. Mining. 2022;61(2):105-20.

22562 22561 22560 22590 22558