Araştırma Makalesi
BibTex RIS Kaynak Göster

Hydrogeochemical Investigation of Suhuhut Plain Groundwaters, Afyonkarahisar-Turkey

Yıl 2021, Cilt: 12 Sayı: 2, 223 - 239, 01.12.2021
https://doi.org/10.29048/makufebed.909030

Öz

In this study, the geological and hydrogeological features of the Suhuhut Plain of Afyonkarahisar Province were examined and the hydrogeochemical facies features of the groundwater were investigated. The geological units in the study area were examined in two groups as autochthonous and allochthonous, and each lithological unit was distinguished as porous aquifer, karstic aquifer, semi-permeable and impermeable units in terms of their hydrogeological properties and aquifer potential. Within the scope of the study, 27 groundwater samples were taken from the boreholes in the study area in May (2019) and the physico-chemical properties of the waters were determined. Ion distribution maps were prepared by using analysis results of waters and Geographical Information Systems (GIS). Ca-Mg-HCO3 and Ca-HCO3 were determined as the dominant water types according to the Piper diagram. According to Gibbs diagrams, all groundwaters are located in the rock-dominated zone and determined main hydrogeochemical processes are carbonate decomposition and silicate decomposition. In addition, ion exchange is one of the possible processes that develop in the aquifer environment. According to the obtained results, the groundwater chemistry in the study area develops mainly under the control of rock-water interaction. However, agricultural activities in the region also affect water chemistry.

Kaynakça

  • Aghazadeh, N., Mogaddam, A.A. (2011). Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environmental Monitoring and Assessment, 176: 183–195.
  • ASTM D6517-00 (2000). Standard Guide for Field Preservation of Ground-Water Samples, ASTM International, West Conshohocken, PA, www.astm.org, DOI: 10.1520/D6517-00
  • ASTM D5903-96 (2017). e1, Standard Guide for Planning and Preparing for a Groundwater Sampling Event, ASTM International, West Conshohocken, PA, www.astm.org, DOI: 10.1520/D5903-96R17E01
  • ASTM D4448-01 (2019a). Standard Guide for Sampling Ground-Water Monitoring Wells, ASTM International, West Conshohocken, PA, www.astm.org
  • ASTM D6089-19 (2019b), Standard Guide for Documenting a Groundwater Sampling Event, ASTM International, West Conshohocken, PA, www.astm.org, DOI: 10.1520/D6089-19
  • Bozdağ, A. (2016). Assessment of the hydrogeochemical characteristics of groundwater in two aquifer systems in Çumra Plain, Central Anatolia. Environmental Earth Sciences, 75(8): 1-15.
  • Gibbs, R.J. (1970). Mechanisms controlling world water chemistry. Science, 17: 1088–1090.
  • Kazi T.G., Arain M.B., Jamali M.K., Jalbani N., Afridi H.I., Sarfraz R.A., Baig J.A., Shah A.Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72:301–309.
  • Kumar, M., Kumari, K., Singh, U.K., Ramanathan, A.L. (2009). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab:conventional graphical and multivariate statistical approach. Environmental Geology, 57: 873- 884.
  • Lakshmanan, E., Kannan, R., Kumar, M.S. (2003). Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4): 157-166.
  • Laxmankumar D., Satyanarayana E., Dhakate R. Saxena P.R. (2019). Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundwater for Sustainable Development, 8: 474-483.
  • Li F., Zhu J., Deng X., Zhao Y., Li S. (2018). Assessment and uncertainty analysis of groundwater risk. Environmental Research, 160: 140-151.
  • Mülga Orman ve Su İşleri Bakanlığı, (2013). Akarçay Havzası Hidrojeolojik Etüt Raporu, Orman ve Su İşleri Bakanlığı, Devlet Su İşleri 18. Bölge Müdürlüğü, Isparta.
  • Nadiri A.A., Moghaddam A.A., Tsai F.T., Fijani E. (2013). Hydrogeochemical analysis for Tasuj plain aquifer, Iran. Journal of Earth System Scince, 122(4): 1091-1105.
  • Özgül, B., (2000). Şuhut Ovasının Hidrojeoloji İncelemesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Isparta.
  • Piper. A.M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions, American Geophysical Union, 25: 914‐923.
  • Rao, N. S., Chaudhary, M. (2019). Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): a case study. Groundwater for Sustainable Development, 9: 100238.
  • Redwan, M., Moneim, A.A.A., Amra, M.A. (2016). Effect of water–rock interaction processes on the hydrogeochemistry of groundwater west of Sohag area, Egypt. Arabian Journal of Geosciences, 9(2): 111; DOI 10.1007/s12517-015-2042-x
  • Sargın, A.H. (2010). Groundwaters. General Directorate of State Hydraulic Works (SHW) Geotechnical Services and Groundwater Department. 200 pg. Ankara-Turkey.
  • Sargın, A.H. (2020). Sürdürülebilir Yeraltısuları Yönetimi için Yeraltısuyu Kütlelerinin Etkileşen Sistemler Yaklaşımıyla İrdelenmesi: Örnek Bir Uygulama. Hacettepe Üniversitesi, Fen Bilimleri Enst., Jeoloji (Hidrojeoloji) Mühendisliği Anabilim Dalı, Doktora Tezi, 209 s. Ankara-Turkey.
  • Sarin, M.M., Krishnaswamy, S., Dilli, K., Somayajulu, B.L.K., Moore, W.S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering process and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53: 997-1009.
  • Schoeller, H. (1965). Hydrodynamique lans lekarts (ecoulemented emmagusinement). Actes Colloques Doubronik, I,AIHS et UNESCO, 3-20.
  • Şener, Ş., Şener, E., Nas, B., Karagüzel, R. (2010). Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste management, 30(11): 2037-2046.
  • Şener, E., Şener, Ş. (2015). Evaluation of groundwater vulnerability to pollution using fuzzy analytic hierarchy process method. Environmental Earth Sciences, 73(12): 8405-8424.
  • TS (1997a), TS 5090. EN 25667-2/Nisan, Su Kalitesi - Numune Alma Bölüm 2: Numune Alma Teknikleri – Kılavuzu.
  • TS (1997b), TS 5106 ISO 5667-3/Nisan, Su Kalitesi - Numune Alma Bölüm 3: Numunelerin Muhafaza Ve Taşınma Kuralları.
  • Varol, S., Davraz, A. (2014). Assessment of geochemistry and hydrogeochemical processes in groundwater of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences, 71(11): 4657-4673.
  • Yetiş, A.D. (2013). Determination of Ceylanpınar Plain Groundwater Quality and Pollution Potential. Çukurova University, Institute of Science, Department of Environmental Sciences, PhD thesis. Adana-Turkey. (Supported by Research Projects Unit. Project No: MMF2012D5).

Afyonkarahisar Şuhut Ovası Yeraltısularının Hidrojeokimyasal İncelemesi

Yıl 2021, Cilt: 12 Sayı: 2, 223 - 239, 01.12.2021
https://doi.org/10.29048/makufebed.909030

Öz

Bu çalışmada, Afyonkarahisar İli Şuhut Ovasının jeolojik ve hidrojeolojik özellikleri ile yeraltısularının hidrojeokimyasal fasiyes özellikleri incelenmiştir. Çalışma alanındaki jeolojik birimler otokton ve allokton olmak üzere iki grup halinde incelenmiş ve her bir litolojik birim hidrojeolojik özellikleri ve akifer olabilme potansiyelleri bakımından gözenekli akifer, karstik akifer, yarı geçirimli ve geçirimsiz birimler olarak ayırtlanmıştır. Çalışma kapsamında, Mayıs (2019) döneminde çalışma alanındaki sondaj kuyularında 27 adet yeraltısuyu örneği alınmış ve suların fiziko-kimyasal özellikleri belirlenmiştir. Suların analiz sonuçları ve Coğrafi Bilgi Sistemlerinden (CBS) yararlanılarak iyon dağılım haritaları hazırlanmıştır. Ayrıca farklı hidrojeokimyasal değerlendirme diyagramları kullanılarak suların kimyasal süreçleri değerlendirilmiştir. Piper diyagramına göre Ca-Mg-HCO3 ve Ca-HCO3 baskın su tipleri olarak belirlenmiştir. Gibbs diyagramlarına göre, yeraltısularının tamamı kayaç baskın bölgede bulunmakta olup belirlenen başlıca hidrojeokimyasal süreçler ise karbonat ayrışması ve silikat ayrışmasıdır. Ayrıca, iyon değişimi akifer ortamda gelişen muhtemel süreçlerden birisidir. Elde edilen sonuçlara göre, çalışma alanındaki yeraltısuyu kimyası başlıca kayaç-su etkileşiminin kontrolünde gelişmektedir. Ancak, bölgedeki tarımsal faaliyetler de su kimyası üzerinde etkindir.

Kaynakça

  • Aghazadeh, N., Mogaddam, A.A. (2011). Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environmental Monitoring and Assessment, 176: 183–195.
  • ASTM D6517-00 (2000). Standard Guide for Field Preservation of Ground-Water Samples, ASTM International, West Conshohocken, PA, www.astm.org, DOI: 10.1520/D6517-00
  • ASTM D5903-96 (2017). e1, Standard Guide for Planning and Preparing for a Groundwater Sampling Event, ASTM International, West Conshohocken, PA, www.astm.org, DOI: 10.1520/D5903-96R17E01
  • ASTM D4448-01 (2019a). Standard Guide for Sampling Ground-Water Monitoring Wells, ASTM International, West Conshohocken, PA, www.astm.org
  • ASTM D6089-19 (2019b), Standard Guide for Documenting a Groundwater Sampling Event, ASTM International, West Conshohocken, PA, www.astm.org, DOI: 10.1520/D6089-19
  • Bozdağ, A. (2016). Assessment of the hydrogeochemical characteristics of groundwater in two aquifer systems in Çumra Plain, Central Anatolia. Environmental Earth Sciences, 75(8): 1-15.
  • Gibbs, R.J. (1970). Mechanisms controlling world water chemistry. Science, 17: 1088–1090.
  • Kazi T.G., Arain M.B., Jamali M.K., Jalbani N., Afridi H.I., Sarfraz R.A., Baig J.A., Shah A.Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72:301–309.
  • Kumar, M., Kumari, K., Singh, U.K., Ramanathan, A.L. (2009). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab:conventional graphical and multivariate statistical approach. Environmental Geology, 57: 873- 884.
  • Lakshmanan, E., Kannan, R., Kumar, M.S. (2003). Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4): 157-166.
  • Laxmankumar D., Satyanarayana E., Dhakate R. Saxena P.R. (2019). Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundwater for Sustainable Development, 8: 474-483.
  • Li F., Zhu J., Deng X., Zhao Y., Li S. (2018). Assessment and uncertainty analysis of groundwater risk. Environmental Research, 160: 140-151.
  • Mülga Orman ve Su İşleri Bakanlığı, (2013). Akarçay Havzası Hidrojeolojik Etüt Raporu, Orman ve Su İşleri Bakanlığı, Devlet Su İşleri 18. Bölge Müdürlüğü, Isparta.
  • Nadiri A.A., Moghaddam A.A., Tsai F.T., Fijani E. (2013). Hydrogeochemical analysis for Tasuj plain aquifer, Iran. Journal of Earth System Scince, 122(4): 1091-1105.
  • Özgül, B., (2000). Şuhut Ovasının Hidrojeoloji İncelemesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Isparta.
  • Piper. A.M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions, American Geophysical Union, 25: 914‐923.
  • Rao, N. S., Chaudhary, M. (2019). Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): a case study. Groundwater for Sustainable Development, 9: 100238.
  • Redwan, M., Moneim, A.A.A., Amra, M.A. (2016). Effect of water–rock interaction processes on the hydrogeochemistry of groundwater west of Sohag area, Egypt. Arabian Journal of Geosciences, 9(2): 111; DOI 10.1007/s12517-015-2042-x
  • Sargın, A.H. (2010). Groundwaters. General Directorate of State Hydraulic Works (SHW) Geotechnical Services and Groundwater Department. 200 pg. Ankara-Turkey.
  • Sargın, A.H. (2020). Sürdürülebilir Yeraltısuları Yönetimi için Yeraltısuyu Kütlelerinin Etkileşen Sistemler Yaklaşımıyla İrdelenmesi: Örnek Bir Uygulama. Hacettepe Üniversitesi, Fen Bilimleri Enst., Jeoloji (Hidrojeoloji) Mühendisliği Anabilim Dalı, Doktora Tezi, 209 s. Ankara-Turkey.
  • Sarin, M.M., Krishnaswamy, S., Dilli, K., Somayajulu, B.L.K., Moore, W.S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering process and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53: 997-1009.
  • Schoeller, H. (1965). Hydrodynamique lans lekarts (ecoulemented emmagusinement). Actes Colloques Doubronik, I,AIHS et UNESCO, 3-20.
  • Şener, Ş., Şener, E., Nas, B., Karagüzel, R. (2010). Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste management, 30(11): 2037-2046.
  • Şener, E., Şener, Ş. (2015). Evaluation of groundwater vulnerability to pollution using fuzzy analytic hierarchy process method. Environmental Earth Sciences, 73(12): 8405-8424.
  • TS (1997a), TS 5090. EN 25667-2/Nisan, Su Kalitesi - Numune Alma Bölüm 2: Numune Alma Teknikleri – Kılavuzu.
  • TS (1997b), TS 5106 ISO 5667-3/Nisan, Su Kalitesi - Numune Alma Bölüm 3: Numunelerin Muhafaza Ve Taşınma Kuralları.
  • Varol, S., Davraz, A. (2014). Assessment of geochemistry and hydrogeochemical processes in groundwater of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences, 71(11): 4657-4673.
  • Yetiş, A.D. (2013). Determination of Ceylanpınar Plain Groundwater Quality and Pollution Potential. Çukurova University, Institute of Science, Department of Environmental Sciences, PhD thesis. Adana-Turkey. (Supported by Research Projects Unit. Project No: MMF2012D5).
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Simge Varol 0000-0002-1905-9454

Şehnaz Şener 0000-0003-3191-2291

Erhan Şener 0000-0001-6263-8366

Yayımlanma Tarihi 1 Aralık 2021
Kabul Tarihi 28 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 2

Kaynak Göster

APA Varol, S., Şener, Ş., & Şener, E. (2021). Afyonkarahisar Şuhut Ovası Yeraltısularının Hidrojeokimyasal İncelemesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(2), 223-239. https://doi.org/10.29048/makufebed.909030