Research Article
BibTex RIS Cite

HAVA SEYAHATİNE GEÇİŞİ ETKİLEYEN KRİTERLERİN FARKLI YÖNTEMLERİN KARŞILAŞTIRILMASI YOLUYLA ANALİZİ

Year 2022, Volume: 9 Issue: 2, 1349 - 1373, 29.07.2022
https://doi.org/10.30798/makuiibf.1035167

Abstract

Bu çalışmada, ana merkez statüsünde olmayan ve aralarında aktarmasız uçuş bulunmayan şehir çiftleri arasında alternatif ulaşım modlarından (otomobil, tren, otobüs) havayolu ulaşımına geçişe etki eden kriterler ile hangi kriterlerin değişmesi durumunda havayolu ulaşımına olan talebin artacağı çok araçlı yaklaşımla (hava, kara, deniz ulaşımı) ele alınmıştır. Bu amaçla, Ocak-Mart 2018 tarihleri arasında 3 aylık dönemde Türkiye’nin önemli ticaret, sanayi ve turizm merkezlerinden Kayseri ve Bursa illerinde anket çalışması yapılmıştır. Kayseri’de yaşayan 501, Bursa’da yaşayan 453 bireye uygulanan anketlerden derlenen verilere lojistik regresyon, yapay sinir ağları modeli ve kümeleme analizleri uygulanmıştır. Veri setinin analizi sonucunda elde edilen ampirik bulgulara göre, havayolu ulaşımına geçişte en önemli kriterlerin her üç yönteme göre de seyahat maliyeti/bilet fiyatının uygunluğu ile aktarmasız/direkt ulaşım olduğu sonucuna ulaşılmıştır. Çalışmada elde edilen önemli bir bulgu da Yapay Sinir Ağları (YSA) modelinin diğer modellere göre daha başarılı kestirim yaptığı yönünde olmuştur. Bu çalışma, üç farklı yöntemin de karşılaştırmalı olarak ele alındığı öncül çalışmalardan biri olması açısından önemlidir.

References

  • Boonekamp, T., Zuidberg, J., Burghouwt, G. (2018), “Determinants of air travel demand: The role of low-cost carriers, ethnic links and aviation-dependent employment”, Transportation Research Part A: Policy and Practice, vol. 112, pp. 18-28. ISSN 0965-8564, https://doi.org/10.1016/j.tra.2018.01.004
  • Cici Karaboğa, E. N. ve Bilginer Özsaatcı, F. G. (2021). “The Impact of Crisis Perception on Consumer Purchasing Behaviors During the COVID-19 (Coronavirus) Period: A Research on Consumers in Turkey”, Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 16(3), 727 – 754. Doi: 10.17153/oguiibf.923025
  • Cirium (2021), accessed from https://www.cirium.com/ at 10.10.2021.
  • Çevre ve Şehircilik Bakanlığı [ÇSB] (2021), accessed from https://cevreselgostergeler.csb.gov.tr/ulastirma-turlerine-gore-tasinan-yolcu-ve-yuk-miktari-i- 85789) at 05.10.2021.
  • Jung, S.-Y., Yoo, K.-E. (2014), “Passenger airline choice behavior for domestic short-haul travel in South Korea.” J. Air Transp. Manag. 38, 43–47. https://doi.org/10.1016/j.jairtraman.2013.12.017
  • Hess, Stephane,. Spitza, Greg., Bradleya, Mark., Cooganc Matt. (2018), “Analysis of mode choice for intercity travel: Application of a hybrid choice model to two distinct US corridors.”, Transportation Research Part A: Policy and Practice, vol. 116, pp. 547-567. https://doi.org/10.1016/j.tra.2018.05.019
  • International Air Transportation Association [IATA] (2021), accessed from https://www.iata.org/ at 05.11.2021.
  • Karasar, N. (1984). Bilimsel Araştırma Metodu. Ankara: Hacetepe Taş Kitapçılık.
  • Kim, K. W., Seo, H.Y. and Kim, Y. (2003), “Forecast of Domestic Air Travel Demand Change by Opening the High Speed Rail”, KSCH Journal of Civil Engineering, 7(5), 603-609.
  • Özdamar, K. (2004). Paket Programlar ile İstatistiksel Veri Analizi 1, Kaan Kitabevi, Eskişehir.
  • Sivrikaya, O. (2013), “Demand Forecasting for Domestic Air Transportation in Turkey”, Okan University Instıtude of Social Sciences, Business Management, May 2013: İstanbul.
  • Temurlenk S. (1991), “Hava Ulaşım Talep Tahmini", Yayımlanmamış Doktora Tezi, Atatürk Üniversitesi İktisadi ve İdari Bilimler Fakültesi: Erzurum.
  • Türkiye İstatistik Kurumu [TÜİK] (2021), accessed from https://cip.tuik.gov.tr/# at 05.12.2021.
  • Valdes, V. (2015), “Determinants of Air Travel Demand in Middle Income Countries”, Journal of Air Transport Management, 42, p.75-84, https://doi.org/10.1016/j.jairtraman.2014.09.002
  • Van Can (2013), “Estimation of travel mode choice for domestic tourists to Nha Trang using”the multinomial probit model.” Transport. Res. Pol. Pract. 49, 149–159. https://doi.org/10.1016/j.tra.2013.01.025
  • Wang, Y., Li, L., Wang, L., Moore, A., Staley, S., Li, Z. (2014), “Modeling traveler mode choice behavior of a new high-speed rail corridor in China.”, Transport. Plann. Technol. 37 (5), 466– 483. https://doi.org/10.1080/03081060.2014.912420
  • Wang, K., Zhang, A., and Zhang, Y. (2018), “Key determinants of airline pricing and air travel demand in China and India: Policy, ownership, and LCC competition”, Transport Policy, 63, p. 80-89, https://doi.org/10.1016/j.tranpol.2017.12.018
  • Worldbank (2021), accessed from http://data.worldbank.org at 04.01.2021
  • Yaylalı, M. and Dilek, Ö. (2009), “Erzurum’da Yolcuların Havayolu Ulaşım Tercihlerini Etkileyen Faktörlerin Tespiti”, Marmara Üniversitesi İ.İ.B.F. Dergisi, 26 (1).
  • Yaşlıoğlu, M, Murat (2017), “Sosyal Bilimlerde Faktör Analizi ve Geçerlilik: Keşfedici ve Doğrulayıcı Faktör Analizlerinin Kullanılması.”Istanbul University Journal of the School of Business, 46, Special issue, http://dergipark.ulakbim.gov.tr/iuisletmeÖzdamar, 2004, p.589
  • Yazıcı (2011), Yazıcı, R.O. (2011), “Air Passenger Demand Forecasting for Planned Airports, Case Study: Zafer and Or-Gi Airports in Turkey”, Middle East Technical University The Graduate School of Natural and Applied Sciences. The Degree of Master of Science in Civil Engineering. January 2011: Ankara.
  • Zhou, H., Xia, J., Norman, R., Hughes, B., Nikolova, G., Kelobonye, K., Du, K.,”Falkmer, T. (2019), “Do air passengers behave differently to other regional travellers?: A travel mode choice model investigation”, Journal of Air Transport Management, vol. 79, 101682, ISSN 0969-6997, https://doi.org/10.1016/j.jairtraman.2019.101682

ANALYZING THE CRITERIA AFFECTING TRANSITION TO AIRPLANE BY COMPARING DIFFERENT METHODS

Year 2022, Volume: 9 Issue: 2, 1349 - 1373, 29.07.2022
https://doi.org/10.30798/makuiibf.1035167

Abstract

This study, using the multi-vehicle approach, discusses the criteria affecting the transition from alternative transportation modes (car, train, bus) to air transportation between city pairs that neither have a hub status nor non-stop flights between them. If these criteria change, the demand for air transportation will increase. For this purpose, a survey was conducted in the provinces of Kayseri and Bursa, which are among the important trade, industry, and tourism centers in Turkey, in the course of three months between January and March, 2018. Logistic regression, the artificial neural network model, and clustering analyses were applied to the data compiled from questionnaires responded to by 501 individuals in Kayseri and 453 individuals in Bursa. According to the empirical findings, it was concluded that the most significant criteria in the transition to air transportation according to all three methods are the cost of travel/ticket price and non-stop flight. Additionally, it was observed that the Artificial Neural Networks (ANN) model made more accurate predictions compared to others. This study is important since it compares three different methods for the purpose of criteria determination concerning the choice of transportation modes.

References

  • Boonekamp, T., Zuidberg, J., Burghouwt, G. (2018), “Determinants of air travel demand: The role of low-cost carriers, ethnic links and aviation-dependent employment”, Transportation Research Part A: Policy and Practice, vol. 112, pp. 18-28. ISSN 0965-8564, https://doi.org/10.1016/j.tra.2018.01.004
  • Cici Karaboğa, E. N. ve Bilginer Özsaatcı, F. G. (2021). “The Impact of Crisis Perception on Consumer Purchasing Behaviors During the COVID-19 (Coronavirus) Period: A Research on Consumers in Turkey”, Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 16(3), 727 – 754. Doi: 10.17153/oguiibf.923025
  • Cirium (2021), accessed from https://www.cirium.com/ at 10.10.2021.
  • Çevre ve Şehircilik Bakanlığı [ÇSB] (2021), accessed from https://cevreselgostergeler.csb.gov.tr/ulastirma-turlerine-gore-tasinan-yolcu-ve-yuk-miktari-i- 85789) at 05.10.2021.
  • Jung, S.-Y., Yoo, K.-E. (2014), “Passenger airline choice behavior for domestic short-haul travel in South Korea.” J. Air Transp. Manag. 38, 43–47. https://doi.org/10.1016/j.jairtraman.2013.12.017
  • Hess, Stephane,. Spitza, Greg., Bradleya, Mark., Cooganc Matt. (2018), “Analysis of mode choice for intercity travel: Application of a hybrid choice model to two distinct US corridors.”, Transportation Research Part A: Policy and Practice, vol. 116, pp. 547-567. https://doi.org/10.1016/j.tra.2018.05.019
  • International Air Transportation Association [IATA] (2021), accessed from https://www.iata.org/ at 05.11.2021.
  • Karasar, N. (1984). Bilimsel Araştırma Metodu. Ankara: Hacetepe Taş Kitapçılık.
  • Kim, K. W., Seo, H.Y. and Kim, Y. (2003), “Forecast of Domestic Air Travel Demand Change by Opening the High Speed Rail”, KSCH Journal of Civil Engineering, 7(5), 603-609.
  • Özdamar, K. (2004). Paket Programlar ile İstatistiksel Veri Analizi 1, Kaan Kitabevi, Eskişehir.
  • Sivrikaya, O. (2013), “Demand Forecasting for Domestic Air Transportation in Turkey”, Okan University Instıtude of Social Sciences, Business Management, May 2013: İstanbul.
  • Temurlenk S. (1991), “Hava Ulaşım Talep Tahmini", Yayımlanmamış Doktora Tezi, Atatürk Üniversitesi İktisadi ve İdari Bilimler Fakültesi: Erzurum.
  • Türkiye İstatistik Kurumu [TÜİK] (2021), accessed from https://cip.tuik.gov.tr/# at 05.12.2021.
  • Valdes, V. (2015), “Determinants of Air Travel Demand in Middle Income Countries”, Journal of Air Transport Management, 42, p.75-84, https://doi.org/10.1016/j.jairtraman.2014.09.002
  • Van Can (2013), “Estimation of travel mode choice for domestic tourists to Nha Trang using”the multinomial probit model.” Transport. Res. Pol. Pract. 49, 149–159. https://doi.org/10.1016/j.tra.2013.01.025
  • Wang, Y., Li, L., Wang, L., Moore, A., Staley, S., Li, Z. (2014), “Modeling traveler mode choice behavior of a new high-speed rail corridor in China.”, Transport. Plann. Technol. 37 (5), 466– 483. https://doi.org/10.1080/03081060.2014.912420
  • Wang, K., Zhang, A., and Zhang, Y. (2018), “Key determinants of airline pricing and air travel demand in China and India: Policy, ownership, and LCC competition”, Transport Policy, 63, p. 80-89, https://doi.org/10.1016/j.tranpol.2017.12.018
  • Worldbank (2021), accessed from http://data.worldbank.org at 04.01.2021
  • Yaylalı, M. and Dilek, Ö. (2009), “Erzurum’da Yolcuların Havayolu Ulaşım Tercihlerini Etkileyen Faktörlerin Tespiti”, Marmara Üniversitesi İ.İ.B.F. Dergisi, 26 (1).
  • Yaşlıoğlu, M, Murat (2017), “Sosyal Bilimlerde Faktör Analizi ve Geçerlilik: Keşfedici ve Doğrulayıcı Faktör Analizlerinin Kullanılması.”Istanbul University Journal of the School of Business, 46, Special issue, http://dergipark.ulakbim.gov.tr/iuisletmeÖzdamar, 2004, p.589
  • Yazıcı (2011), Yazıcı, R.O. (2011), “Air Passenger Demand Forecasting for Planned Airports, Case Study: Zafer and Or-Gi Airports in Turkey”, Middle East Technical University The Graduate School of Natural and Applied Sciences. The Degree of Master of Science in Civil Engineering. January 2011: Ankara.
  • Zhou, H., Xia, J., Norman, R., Hughes, B., Nikolova, G., Kelobonye, K., Du, K.,”Falkmer, T. (2019), “Do air passengers behave differently to other regional travellers?: A travel mode choice model investigation”, Journal of Air Transport Management, vol. 79, 101682, ISSN 0969-6997, https://doi.org/10.1016/j.jairtraman.2019.101682
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

İzay Reyhanoğlu 0000-0002-4645-5030

Dilaver Tengilimoğlu 0000-0001-9638-1685

Publication Date July 29, 2022
Submission Date December 10, 2021
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Reyhanoğlu, İ., & Tengilimoğlu, D. (2022). ANALYZING THE CRITERIA AFFECTING TRANSITION TO AIRPLANE BY COMPARING DIFFERENT METHODS. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 9(2), 1349-1373. https://doi.org/10.30798/makuiibf.1035167