Research Article
BibTex RIS Cite

Karbondioksitli Kaskad Soğutma Sistemlerinin Enerji Performans Değerlendirilmesi

Year 2020, Volume: 4 Issue: 1, 22 - 32, 13.03.2020
https://doi.org/10.31200/makuubd.669252

Abstract

Bu
çalışmada, R744 + R717 / R1234ze / R134a / R152a soğutkanları kullanılan dört
farklı kaskad sisteminin karşılaştırılması sunulmuştur. Analiz -45°C’den
-20°C’ye değişen farklı evaporatör sıcaklıklarında ve 30°C’den 50°C’ye değişen
farklı kondenser sıcaklıklarında gerçekleştirilmiştir. Evaporatör sıcaklığı
25°C arttırıldığında, tüm sistemin soğutma performansı (COPSYS)
değeri yaklaşık %60 ila %64 arasında artmış ve kompresör gücü de yaklaşık %38
oranında azalmıştır. Kondenser sıcaklığının 20°C arttırılması, COPSYS'de
%29 34 oranında bir azalmaya ve kompresör gücünde yaklaşık %38-50 oranında bir
artışa neden olmuştur. Sonuçlara göre, düşük küresel ısınma potansiyeli (GWP)
ve yüksek soğutma performansı değerine sahip olan R744/R717 soğutucu
akışkanları kullanılan "sistem 1" kombinasyonunun, incelenen diğer
kaskad soğutma sistemlerinden daha verimli olduğunu belirlenmiştir. 

References

  • Alhamid, M. I. & Syaka, D. R. (2010). Exergy and energy analysis of a cascade refrigeration system using R744+ R170 for low temperature applications. International Journal of Mechanical & Mechatronics Engineering, 10(6),1-8.
  • Aminyavari, M., Najafi, B., Shirazi, A., & Rinaldi, F. (2014). Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system. Applied Thermal Engineering, 65(1-2), 42-50.
  • Başaran, A., & Özgener, L. (2013). Doğaya zararlı halokarbon soğutkanların çevresel etkileri ve alınan önlemler. Engineer & the Machinery Magazine, 640.
  • Boyaghchi, F. A., & Asgari, S. (2017). A comparative study on exergetic, exergoeconomic and exergoenvironmental assessments of two internal auto-cascade refrigeration cycles. Applied Thermal Engineering, 122, 723-737.
  • da Silva, A., Bandarra Filho, E. P., & Antunes, A. H. P. (2012). Comparison of a R744 cascade refrigeration system with R404A and R22 conventional systems for supermarkets. Applied Thermal Engineering, 41, 30-35.
  • Dopazo, J. A., Fernández-Seara, J., Sieres, J., & Uhía, F. J. (2009). Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures. Applied Thermal Engineering, 29(8-9), 1577-1583.
  • EES, 2016. Engineering Equation Solver, F-Chart Software.
  • Khanmohammadi, S., Goodarzi, M., Khanmohammadi, S., & Ganjehsarabi, H. (2018). Thermoeconomic modeling and multi-objective evolutionary-based optimization of a modified transcritical CO2 refrigeration cycle. Thermal Science and Engineering Progress, 5, 86-96.
  • Lizarte, R., Palacios-Lorenzo, M. E., & Marcos, J. D. (2017). Parametric study of a novel organic Rankine cycle combined with a cascade refrigeration cycle (ORC-CRS) using natural refrigerants. Applied Thermal Engineering, 127, 378-389.
  • Llopis, R., Sánchez, D., Sanz-Kock, C., Cabello, R., & Torrella, E. (2015). Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems. Applied Energy, 138, 133-142.
  • Mancuhan, E., Tunç, B., Yetkin, K., & Çelik, C. (2019). Comparative analysis of cascade refrigeration systems’ performance and enviromental impacts, Journal of the Turkish Chemical Society Section B: Chemical Engineering, 2 (2), 97-108.
  • Messineo, A. (2012). R744-R717 cascade refrigeration system: performance evaluation compared with a HFC two-stage system. Energy Procedia, 14, 56-65.
  • Mishra, R.S., 2018. Thermodynamic analysis of two stages cascade refrigeration system using r-1234ze in high temperature circuit and r1234yf in low temperature circuit for replacing HFC (R-134a) refrigerant, International Journal of Research in Engineering and Innovation, 2 (4), 364-373.
  • Oruç, V., Devecioğlu, A. G., & Ender, S. (2018). Improvement of energy parameters using R442A and R453A in a refrigeration system operating with R404A. Applied Thermal Engineering, 129, 243-249.
  • Parmar, G. G., & Kapadia, D. R. (2015). Thermodynamic analysis of cascade refrigeration system using a natural refrigerants for supermarket application. International Journal of Innovative Research in Science, Engineering and Technology. 4(6), 1839- 1846.
  • Singh, S., & Dasgupta, M. S. (2016). Thermodynamic analysis of a low TEWI (R1234yf-R744) cascade system, National Conference on Recent Trends in Mechanical Engineering, India.
  • Yilmaz, B., Erdonmez, N., Sevindir, M. K., & Mancuhan, E. (2014). Thermodynamic analysis and optimization of cascade condensing temperature of a CO2 (R744)/R404A cascade refrigeration system. International Refrigeration and Air Conditioning Conference. ABD
  • Yılmaz, F. & Selbaş, R. (2017). Energy and exergy analyses of CO2/HFE7000 cascade cooling system, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (3), 854-860.

Energy Performance Assessment of CO2 Cascade Refrigeration Systems

Year 2020, Volume: 4 Issue: 1, 22 - 32, 13.03.2020
https://doi.org/10.31200/makuubd.669252

Abstract

In
this study, a comparison of the four different cascade systems using
R744+R717/R1234ze/R134a/R152a refrigerant pairs has been presented. The
analysis has been performed for different evaporator temperatures ranged from
-45 up to -20°C, and different condenser temperatures ranged from 30 up to
50°C. When the evaporator temperature has been increased by 25°C, the system
cooling performance (COPSYS) value has increased by about 60% to
64%, and the compressor work has decreased by about 38%. Increasing the
condenser temperature by 20°C has resulted in a decrease in COPSYS
of 29-34% and an increase in compressor work by about 38% to 50%. According to
the results, the combination of “system 1” using R744/R717 refrigerants which
having low GWP and high cooling performance has been determined more efficient
than other examined cascade refrigeration systems. 

References

  • Alhamid, M. I. & Syaka, D. R. (2010). Exergy and energy analysis of a cascade refrigeration system using R744+ R170 for low temperature applications. International Journal of Mechanical & Mechatronics Engineering, 10(6),1-8.
  • Aminyavari, M., Najafi, B., Shirazi, A., & Rinaldi, F. (2014). Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system. Applied Thermal Engineering, 65(1-2), 42-50.
  • Başaran, A., & Özgener, L. (2013). Doğaya zararlı halokarbon soğutkanların çevresel etkileri ve alınan önlemler. Engineer & the Machinery Magazine, 640.
  • Boyaghchi, F. A., & Asgari, S. (2017). A comparative study on exergetic, exergoeconomic and exergoenvironmental assessments of two internal auto-cascade refrigeration cycles. Applied Thermal Engineering, 122, 723-737.
  • da Silva, A., Bandarra Filho, E. P., & Antunes, A. H. P. (2012). Comparison of a R744 cascade refrigeration system with R404A and R22 conventional systems for supermarkets. Applied Thermal Engineering, 41, 30-35.
  • Dopazo, J. A., Fernández-Seara, J., Sieres, J., & Uhía, F. J. (2009). Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures. Applied Thermal Engineering, 29(8-9), 1577-1583.
  • EES, 2016. Engineering Equation Solver, F-Chart Software.
  • Khanmohammadi, S., Goodarzi, M., Khanmohammadi, S., & Ganjehsarabi, H. (2018). Thermoeconomic modeling and multi-objective evolutionary-based optimization of a modified transcritical CO2 refrigeration cycle. Thermal Science and Engineering Progress, 5, 86-96.
  • Lizarte, R., Palacios-Lorenzo, M. E., & Marcos, J. D. (2017). Parametric study of a novel organic Rankine cycle combined with a cascade refrigeration cycle (ORC-CRS) using natural refrigerants. Applied Thermal Engineering, 127, 378-389.
  • Llopis, R., Sánchez, D., Sanz-Kock, C., Cabello, R., & Torrella, E. (2015). Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems. Applied Energy, 138, 133-142.
  • Mancuhan, E., Tunç, B., Yetkin, K., & Çelik, C. (2019). Comparative analysis of cascade refrigeration systems’ performance and enviromental impacts, Journal of the Turkish Chemical Society Section B: Chemical Engineering, 2 (2), 97-108.
  • Messineo, A. (2012). R744-R717 cascade refrigeration system: performance evaluation compared with a HFC two-stage system. Energy Procedia, 14, 56-65.
  • Mishra, R.S., 2018. Thermodynamic analysis of two stages cascade refrigeration system using r-1234ze in high temperature circuit and r1234yf in low temperature circuit for replacing HFC (R-134a) refrigerant, International Journal of Research in Engineering and Innovation, 2 (4), 364-373.
  • Oruç, V., Devecioğlu, A. G., & Ender, S. (2018). Improvement of energy parameters using R442A and R453A in a refrigeration system operating with R404A. Applied Thermal Engineering, 129, 243-249.
  • Parmar, G. G., & Kapadia, D. R. (2015). Thermodynamic analysis of cascade refrigeration system using a natural refrigerants for supermarket application. International Journal of Innovative Research in Science, Engineering and Technology. 4(6), 1839- 1846.
  • Singh, S., & Dasgupta, M. S. (2016). Thermodynamic analysis of a low TEWI (R1234yf-R744) cascade system, National Conference on Recent Trends in Mechanical Engineering, India.
  • Yilmaz, B., Erdonmez, N., Sevindir, M. K., & Mancuhan, E. (2014). Thermodynamic analysis and optimization of cascade condensing temperature of a CO2 (R744)/R404A cascade refrigeration system. International Refrigeration and Air Conditioning Conference. ABD
  • Yılmaz, F. & Selbaş, R. (2017). Energy and exergy analyses of CO2/HFE7000 cascade cooling system, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (3), 854-860.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tuğba Kovacı 0000-0002-0974-1660

Publication Date March 13, 2020
Acceptance Date January 24, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Kovacı, T. (2020). Karbondioksitli Kaskad Soğutma Sistemlerinin Enerji Performans Değerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 4(1), 22-32. https://doi.org/10.31200/makuubd.669252


14292     14293      14295 14921