Comparing Cellulotic Enzyme Activities of Neocallimastix sp. in Orpin’s and Menke’s Media
Year 2022,
Volume: 13 Issue: 1, 55 - 61, 28.04.2022
Altuğ Karaman
,
Halit Yücel
,
Kübra Ekinci
,
Sabahattin Cömertpay
Abstract
Neocallimastix sp. is a member of the Anaerobic Gut Fungi (AGF) family with unique lignocellulotic enzymes, and it is usually grown in two basic media in vitro. Orpin’s mediais preferred for the detection of enzymatic activites while Menke’s is mostly chosen for evaluating the gases produced during the fermantation. Although these two media were shown to be effective for their targeted purposes, no attempt has been made to compare the activities of various cellulotic enzymes in them. In this study, we measured the growth rate of Neocallimastix sp. in these two media up to 7 days and A similar progress was observed in both (p>0.05). We also discovered that Menke’s media was better for the 5th (p<0.001) and 7th (p<0.0.1) days of Avicellase and for up to 5 days [0 (p<0.001), 3 (p<0.01), 5 (p<0.0001)] of Xylanase activity. Orpin’s media, on the other hand, displayed superior CMCase activity in all time points[0 (p<0.001), 3 (p<0.0001), 5 (p<0.05, 7 (p<0.001)]. As for Cellulase, the activities were measured virtually the same for the both media on the 0th and the 3rd days whereas they were higher in Menke’s (p<0.0001) on the 5th, and in Orpin’s on the 7th day (p<0.01). As a result, in Xylanase enzyme studies, it has been determined that menke media gives better results.
Thanks
We would like to thank Mehmet Sait Ekinci and Emin Özköse for their intellectual and financial contributions. Halit YÜCEL 100/2000 Graduate Scholarship gratefully thanks to YÖK.
References
- Balch, W.E. and Wolfe, R. (1976). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependentgrowth methanobacterium ruminantium in pressureizedatmosphere. Applied and environmental microbiology 32(6) : 781-791.https://aem.asm.org/content/32/6/781/article-info Accessed:Feb. 16, 2020.
- Banerjee, G., Scott-Craig, J. S and Walton, J. D. (2010). Improving enzymes for biomass conversion: a basic research perspective. Bioenergy research 3(1) : 82-92. Available from: https://doi.org/10.1007/s12155-009-9067-5Accessed:Feb. 16, 2020doi : 10.1007/s12155-009-9067-5.
- Bobleter, O. (1994). Hydrothermaldegradation of polymers derived from plants. Progress in polymerscience 19 (5) : 797-841. Available from: https://doi.org/10.1016/j.biortech.2019.122687 Accessed:Feb. 16, 2020 doi:10.1016/j.biortech.2019.122687.
- Canbolat, O. (2012). Potential nutritive value of field Binweed (Convolvulus arvensis L) Hay harvested at three different maturity stages. Kafkas UnivVet Fak Derg.18(2):331-335. Available from: http://vetdergikafkas.org/uploads/pdf/pdf_KVFD_1101.pdf Accessed:Feb. 16, 2020Doi: 10.9775/kvfd.2011.5533.
- Cao, Y.C. and Yang, H.J. (2011). Ruminal digestibility and fermentation characteristics in vitro of fenugreek and alfalfa hay combination with or without the inoculation of Neocallimastix sp. YAK11. Animal feed science and technology 169 (1-2) : 53-60. Available from: https://doi.org/10.1016/j.anifeedsci.2011.05.010 Accessed:Feb. 16, 2020doi:10.1016/j.anifeedsci.2011.05.010.
- Comlekcioglu, U., Gunes, M., Altun, H., Ekiz, D.O. and Aygan, A. (2017). Coexpression of rumen fungal xylanase and bifunctional cellulase genes in Escherichia coli. Brazilian Archives of Biology and Technology: 60. Available from: http://dx.doi.org/10.1590/1678-4324-2017160462Accessed:Feb. 16, 2020doi:10.1590/1678-4324-2017160462.
- Comlekcioglu, U., Ozkose, E., Tutus, A., Akyol, I. and Ekinci, M.S. (2010). Cloning and characterization of cellulase and xylanase coding genes from anaerobic fungus Neocallimastix sp. GMLF1. Int J Agric Biol. 12(5): 691-696.
- Comlekcioglu, U., Yazdıç, F.C., Keser, S., Battaloğlu, G., and Özköse, E. (2012). Effects of carbon sources on enzyme production of Neocallimastix sp. and Orpinomyces sp. Kafkas Üniversitesi Veteriner Fakültesi Derg.18 (5) : 799-806. Available from: https://www.cabdirect.org/cabdirect/abstract/20123278802Accessed:Feb. 16, 2020.
- Dagar, S.S., Kumar, S., Mudgil, P. and Puniya, A.K. (2018). Comparative evaluation of lignocellulolytic activities of filamentous cultures of monocentric and polycentric anaerobic fungi. Anaerobe50: 76-79. Available from: https://doi.org/10.1016/j.anaerobe.2018.02.004 Accessed:Feb. 16, 2020doi:10.1016/j.anaerobe.2018.02.004
- De Man, J.C., (1975). The probability of most probable numbers. European journal of applied microbiology and biotechnology 1(1) : 67-78. Available from: https://doi.org/10.1007/BF01880621Accessed:Feb. 16, 2020doi:10.1007/BF01880621.
- Grenet, E., and Barry, P., (1988). Colonization of thick-walled plant tissues by anaerobic fungi. Anim FdSciTechnol.19: 25-31. Available from: https://doi.org/10.1016/0377-8401(88)90051-XAccessed:Feb.16, 2020doi.10.1016/0377-8401(88)90051-X
- Kamra, D.N. (2005). Rumen microbial ecosystem. CurrSciIndia89(1): 124-135. Available from:https://www.jstor.org/stable/24110438?seq=1#metadata_info_tab_contentsAccessed:Feb. 16, 2020
- Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D. and Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science 93(1) : 217-222, 1979. Available from: https://doi.org/10.1017/S0021859600086305Accessed:Feb. 16, 2020doi:10.1017/S0021859600086305.
- Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyticalchemistry 31(3) : 426-428. Available from: https://doi.org/10.1021/ac60147a030Accessed:Feb. 16, 2020doi:10.1021/ac60147a030.
- Orpin, C.G. (1976). The characterization of the rumen bacterium Eadie's oval, Magnoovum gen. nov. eadii sp. nov. Archives of microbiology 111(1-2) : 155-159. Available from: https://doi.org/10.1007/BF00446563Accessed:Feb. 16, 2020doi:10.1007/BF00446563.
- Sanni, T.A., Jesuyon, O.M.A., Adejoro, F.A., Baiyeri, S.O., Boluwaji, O.V., Akanmu, A.M. and Hassen, A. (2020). Influence of supplementing Guinea grass with differently processed African yam bean on gas production and in vitro digestibility. Revista Brasileira de Zootecnia: 49. Available from: https://doi.org/10.37496/rbz4920200029 Accessed:Feb. 16, 2020 doi:10.37496/rbz4920200029.
- Sarnataro,C., Spanghero, M. And Lavrenčič, A. (2020). Supplementation of diets with tannins from Chestnut wood or an extract from Stevia rebaudiana Bertoni and effects on in vitro rumen fermentation, protozoa count and methane production. Journal of Animal Physiology and Animal Nutrition 104 (5) : 1310-1316. Available from: https://doi.org/10.1111/jpn.13414Accessed:Feb. 16, 2020doi:10.1111/jpn.13414.
- Steenbakkers, P.J., Harhangi, H.R., Bosscher, M.W., Hooft, M.M.V.D., Keltjens, J.T., Drift, C.V.D., Vogels, G.D. and Op den Camp H.J.M. (2003). beta-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. BiochemicalJournal 370(3) : 963-970. Available from: https://doi.org/10.1042/bj20021767Accessed:Feb. 16, 2020doi:10.1042/bj20021767.
- Theodorou, M. K., Gill, M., King-Spooner, C., and Beever, D. E. (1990). Enumeration of anaerobic chytridiomycetes as thallus-forming units: novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem. Applied and Environmental Microbiology, 56(4), 1073-1078.
- Totakul, P., Ampapon, T., Foiklang, S., Uriyapongson, S., Sommai, S., Matra, M., Viennasay, B. and Wanapat, M. (2020). Effect of yeast-fermented de-hulled rice on in vitro gas production, nutrient degradability, and rumen fermentation. Tropical Animal Health and Production 52(6) : 3567-3573. Available from: https://doi.org/10.1007/s11250-020-02393-5Accessed:Feb. 16, 2020doi:10.1007/s11250-020-02393-5.
- Vinzelj, J., Joshi, A., Insam, H. and Podmirseg, S.M. (2020). Employing anaerobic fungi in biogas production: challenges & opportunities. Bioresource Technology300:122687. Available from: https://doi.org/10.1016/j.biortech.2019.122687Accessed:Feb. 16, 2020doi:10.1016/j.biortech.2019.122687.
Orpin ve Menke Besi Ortamlarında Neocallimastix sp'nin Selülotik Enzim Aktivitelerinin Karşılaştırılması
Year 2022,
Volume: 13 Issue: 1, 55 - 61, 28.04.2022
Altuğ Karaman
,
Halit Yücel
,
Kübra Ekinci
,
Sabahattin Cömertpay
Abstract
Neocallimastix sp., benzersiz lignoselülotik enzimlere sahip Anaerobik Gut Fungusları (AGF) ailesinin bir üyesidir ve genellikle in vitro olarak iki temel besi ortamında da yetiştirilir. Enzimatik aktivitelerin tespiti için Orpin besi ortamı tercih edilirken, fermantasyon sırasında oluşan gazların değerlendirilmesi için daha çok Menke besi ortamı tercih edilmektedir. Bu iki ortamın hedeflenen amaçlar için etkili olduğu gösterilmiş olmasına rağmen, bu besi ortamlarındaki çeşitli selülotik enzimlerin aktivitelerini karşılaştırmak için hiçbir girişimde bulunulmamıştır. Bu çalışmada Neocallimastix sp.'nin bu iki besiyerinde de 7 güne kadar büyüme hızı ölçülmüş ve her ikisinde de benzer bir gelişim gözlenmiştir (p>0.05). Ayrıca Menke besi ortamının Aviselaz’ın 5. (p<0.001) ve 7. (p<0.0.1) günleri ve 5. güne kadar [0 (p<0.001), 3 (p<0.01), 5 (p<0.0001)] Ksilanaz aktivitesi için daha iyi olduğu belirlenmiştir. Orpin besi ortamı ise tüm zaman noktalarında [0 (p<0.001), 3 (p<0.0001), 5 (p<0.05, 7 (p<0.001)] üstün KMSaz aktivitesi sergilemiştir. Selülaz için, aktiviteler her iki ortamda 0. ve 3. günlerde hemen hemen aynı ölçülürken, Menke'de (p<0.0001) 5. günde ve Orpin'de 7. günde (p<0.01) daha yüksek olduğu görülmüştür. Sonuç olarak Ksilanaz enzim çalışmalarında menke besi ortamınız daha iyi sonuç verdiği tespit edilmiştir.
References
- Balch, W.E. and Wolfe, R. (1976). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependentgrowth methanobacterium ruminantium in pressureizedatmosphere. Applied and environmental microbiology 32(6) : 781-791.https://aem.asm.org/content/32/6/781/article-info Accessed:Feb. 16, 2020.
- Banerjee, G., Scott-Craig, J. S and Walton, J. D. (2010). Improving enzymes for biomass conversion: a basic research perspective. Bioenergy research 3(1) : 82-92. Available from: https://doi.org/10.1007/s12155-009-9067-5Accessed:Feb. 16, 2020doi : 10.1007/s12155-009-9067-5.
- Bobleter, O. (1994). Hydrothermaldegradation of polymers derived from plants. Progress in polymerscience 19 (5) : 797-841. Available from: https://doi.org/10.1016/j.biortech.2019.122687 Accessed:Feb. 16, 2020 doi:10.1016/j.biortech.2019.122687.
- Canbolat, O. (2012). Potential nutritive value of field Binweed (Convolvulus arvensis L) Hay harvested at three different maturity stages. Kafkas UnivVet Fak Derg.18(2):331-335. Available from: http://vetdergikafkas.org/uploads/pdf/pdf_KVFD_1101.pdf Accessed:Feb. 16, 2020Doi: 10.9775/kvfd.2011.5533.
- Cao, Y.C. and Yang, H.J. (2011). Ruminal digestibility and fermentation characteristics in vitro of fenugreek and alfalfa hay combination with or without the inoculation of Neocallimastix sp. YAK11. Animal feed science and technology 169 (1-2) : 53-60. Available from: https://doi.org/10.1016/j.anifeedsci.2011.05.010 Accessed:Feb. 16, 2020doi:10.1016/j.anifeedsci.2011.05.010.
- Comlekcioglu, U., Gunes, M., Altun, H., Ekiz, D.O. and Aygan, A. (2017). Coexpression of rumen fungal xylanase and bifunctional cellulase genes in Escherichia coli. Brazilian Archives of Biology and Technology: 60. Available from: http://dx.doi.org/10.1590/1678-4324-2017160462Accessed:Feb. 16, 2020doi:10.1590/1678-4324-2017160462.
- Comlekcioglu, U., Ozkose, E., Tutus, A., Akyol, I. and Ekinci, M.S. (2010). Cloning and characterization of cellulase and xylanase coding genes from anaerobic fungus Neocallimastix sp. GMLF1. Int J Agric Biol. 12(5): 691-696.
- Comlekcioglu, U., Yazdıç, F.C., Keser, S., Battaloğlu, G., and Özköse, E. (2012). Effects of carbon sources on enzyme production of Neocallimastix sp. and Orpinomyces sp. Kafkas Üniversitesi Veteriner Fakültesi Derg.18 (5) : 799-806. Available from: https://www.cabdirect.org/cabdirect/abstract/20123278802Accessed:Feb. 16, 2020.
- Dagar, S.S., Kumar, S., Mudgil, P. and Puniya, A.K. (2018). Comparative evaluation of lignocellulolytic activities of filamentous cultures of monocentric and polycentric anaerobic fungi. Anaerobe50: 76-79. Available from: https://doi.org/10.1016/j.anaerobe.2018.02.004 Accessed:Feb. 16, 2020doi:10.1016/j.anaerobe.2018.02.004
- De Man, J.C., (1975). The probability of most probable numbers. European journal of applied microbiology and biotechnology 1(1) : 67-78. Available from: https://doi.org/10.1007/BF01880621Accessed:Feb. 16, 2020doi:10.1007/BF01880621.
- Grenet, E., and Barry, P., (1988). Colonization of thick-walled plant tissues by anaerobic fungi. Anim FdSciTechnol.19: 25-31. Available from: https://doi.org/10.1016/0377-8401(88)90051-XAccessed:Feb.16, 2020doi.10.1016/0377-8401(88)90051-X
- Kamra, D.N. (2005). Rumen microbial ecosystem. CurrSciIndia89(1): 124-135. Available from:https://www.jstor.org/stable/24110438?seq=1#metadata_info_tab_contentsAccessed:Feb. 16, 2020
- Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D. and Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science 93(1) : 217-222, 1979. Available from: https://doi.org/10.1017/S0021859600086305Accessed:Feb. 16, 2020doi:10.1017/S0021859600086305.
- Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyticalchemistry 31(3) : 426-428. Available from: https://doi.org/10.1021/ac60147a030Accessed:Feb. 16, 2020doi:10.1021/ac60147a030.
- Orpin, C.G. (1976). The characterization of the rumen bacterium Eadie's oval, Magnoovum gen. nov. eadii sp. nov. Archives of microbiology 111(1-2) : 155-159. Available from: https://doi.org/10.1007/BF00446563Accessed:Feb. 16, 2020doi:10.1007/BF00446563.
- Sanni, T.A., Jesuyon, O.M.A., Adejoro, F.A., Baiyeri, S.O., Boluwaji, O.V., Akanmu, A.M. and Hassen, A. (2020). Influence of supplementing Guinea grass with differently processed African yam bean on gas production and in vitro digestibility. Revista Brasileira de Zootecnia: 49. Available from: https://doi.org/10.37496/rbz4920200029 Accessed:Feb. 16, 2020 doi:10.37496/rbz4920200029.
- Sarnataro,C., Spanghero, M. And Lavrenčič, A. (2020). Supplementation of diets with tannins from Chestnut wood or an extract from Stevia rebaudiana Bertoni and effects on in vitro rumen fermentation, protozoa count and methane production. Journal of Animal Physiology and Animal Nutrition 104 (5) : 1310-1316. Available from: https://doi.org/10.1111/jpn.13414Accessed:Feb. 16, 2020doi:10.1111/jpn.13414.
- Steenbakkers, P.J., Harhangi, H.R., Bosscher, M.W., Hooft, M.M.V.D., Keltjens, J.T., Drift, C.V.D., Vogels, G.D. and Op den Camp H.J.M. (2003). beta-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. BiochemicalJournal 370(3) : 963-970. Available from: https://doi.org/10.1042/bj20021767Accessed:Feb. 16, 2020doi:10.1042/bj20021767.
- Theodorou, M. K., Gill, M., King-Spooner, C., and Beever, D. E. (1990). Enumeration of anaerobic chytridiomycetes as thallus-forming units: novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem. Applied and Environmental Microbiology, 56(4), 1073-1078.
- Totakul, P., Ampapon, T., Foiklang, S., Uriyapongson, S., Sommai, S., Matra, M., Viennasay, B. and Wanapat, M. (2020). Effect of yeast-fermented de-hulled rice on in vitro gas production, nutrient degradability, and rumen fermentation. Tropical Animal Health and Production 52(6) : 3567-3573. Available from: https://doi.org/10.1007/s11250-020-02393-5Accessed:Feb. 16, 2020doi:10.1007/s11250-020-02393-5.
- Vinzelj, J., Joshi, A., Insam, H. and Podmirseg, S.M. (2020). Employing anaerobic fungi in biogas production: challenges & opportunities. Bioresource Technology300:122687. Available from: https://doi.org/10.1016/j.biortech.2019.122687Accessed:Feb. 16, 2020doi:10.1016/j.biortech.2019.122687.