Research Article
BibTex RIS Cite

Effects of biofloc technology on rearing parameters of Green tiger shrimp (Penaeus semisulcatus) postlarvae

Year 2022, Volume: 4 Issue: 1, 77 - 83, 30.06.2022
https://doi.org/10.51756/marlife.1115778

Abstract

In this study, green tiger shrimp, Penaeus semisulcatus postlarvae (initial body weight of 0,14±0,04 g), were grown in a recirculating aquaculture system in biofloc technology (BF) and clear water (BS) medium for 54 days. The experiment with two groups including three replications, was carried out in ‰35±0.5 salinity and 45 L volume tanks. Water temperature, pH, and dissolved oxygen values were measured as 27.02±0.33°C, 7.65±0.08, 6.23±0.41 mg/L for the BF group and 27.05±0.24°C, 7.57±0.11, 6.44±0.22 mg/L for the BS group, respectively. As a result, the differences between the groups were found to be significant in terms of body weight gain (BF: 2,423±0.327 g, BS: 1.814±0.103 g), specific growth rate (BF: 5.329±0.159 g/day, BS: 4.845±0.085 g/day), survival rate (BF: 62.50±2.50% BS: 51.67±5.20%) and feed conversion rate (BF: 2.12±0.23, BS: 2.71±0.15) (p<0,05). In conclusion, for the first time, BF application was compared with the BS; it was determined that biofloc application affected positively considering the aquaculture parameters of green tiger shrimp postlarvae. There was no significant difference between the groups in terms of nutrient components and hepatopancreas histomorphology.

References

  • AOAC, (2000). Official methods of analysis of AOAC international (17th ed.). Maryland: AOAC International.
  • Avnimelech, Y. (2009). Biofloc technology: a practical guidebook. The World Aquaculture Society.
  • Avnimelech, Y. (2012). Biofloc-based aquaculture systems. Aquaculture Production Systems. New Delhi, India.
  • Azhar, M. H., Suciyono, S., Budi, D. S., Ulkhaq, M. F., Anugrahwati, M. & Ekasari, J. (2020). Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon-nitrogen ratios. Aquaculture International, 28: 1293-1304. https://doi.org/10.1007/s10499-020-00526-z
  • Azim, M. E. & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4): 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036
  • Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tokmechi, A., Farah, K. R. & Jalali, A. S. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquaculture Research, 49: 393-403. https://doi.org/10.1111/are.13469
  • Chen, Z., Ge, H., Chang, Z., Song, X., Zhao, F. & Li, J. (2018). Nitrogen budget in recirculating aquaculture and water exchange systems for culturing Litopenaeus vannamei. Journal of Ocean University of China, 17(4): 905-912. https://doi.org/10.1007/s11802-018-3584-9
  • Dauda, A. B. (2020). Biofloc technology: a review on thr microbial interactions, operational parameters and implications to disease and health managment of cultured aquatic animals. Reviews in Aquaculture, 12(2): 1193-1210. https://doi.org/10.1111/raq.12379
  • Ebeling, J. M. & Timmons, M. B. (2012). Recirculating aquaculture systems. Aquaculture Production Systems, 1:245-277. https://doi.org/10.1002/9781118250105
  • Ekasari, J. & Maryam, S., (2012). Evaluation of biofloc technology application on water quality and production performance of Red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, 19(2): 73-80. https://doi.org/10.4308/hjb.19.2.73
  • Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M. & Miranda-Baeza, A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water quality, 5: 92-109. https://doi.org/10.5772/66416
  • Emerenciano, M., Ballester, E. L., Cavalli, R. O. & Wasielesky, W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3): 447-457. https://doi.org/10.1111/j.1365-2109.2011.02848.x
  • Genc, M. A., Aktas, M., Genc, E. & Yilmaz, E. (2007). Effects of dietary mannan oligosaccharide on growth, body composition and hepatopancreas histology of Penaeus semisulcatus (de Haan 1844). Aquaculture Nutrition, 13(2):156-161. https://doi.org/10.1111/j.1365-2095.2007.00469.x
  • Haghparast, M. M., Alishahi, M., Ghorbanpour, M. & Shahriari, A. (2020). Evaluation of hemato-immunological parameters and stress indicators of common carp (Cyprinus carpio) in different C/N ratio of biofloc system. Aquaculture International, 28: 2191-2206. https://doi.org/10.1007/s10499-020-00578-1
  • Hargreaves, J. A. (2013). Biofloc production systems for aquaculture 4503: 1-11. Stoneville, MS: Southern Regional Aquaculture Center.
  • Johnson, P. T. (1980). Histology of the Blue Crab, Callinectes sapidus: A model for the Decapoda. Praeger, New York.
  • Kasan, N. A., Manan, H., Ismail, T. I. T., Salam, A. I. A., Rahim, A. I, A., Kamarruzan, A. S., Ishak, A. N., Deraman, S., Nasrin, Z., Chik, C. E. N. C. E., Hashim, N. F. C. & Iber, B. T. (2021). Effect of Biofloc product-Rapid BFTTM vs. clear water system in improving the water quality and growth performances of Pacific Whiteleg shrimp, P. vannamei, cultured in indoor aquaculture system. Aquaculture Research, 52(12): 6504-6513. https://doi.org/10.1111/are.15519
  • Kaya, D. & Genc, E. (2018). Su ürünleri yetiştiriciliğinde biyoyumak teknolojisi. Su Ürünleri Dergisi, 35(2): 219-225. https://doi.org/10.12714/egejfas.2018.35.2.16
  • Kaya, D., Genc, E., Genc, M. A., Aktas, M., Eroldogan, O. T. & Guroy, D. (2020). Biofloc technology in recirculating aquaculture system as a culture model for green tiger shrimp, Penaeus semisulcatus: Effects of different feeding rates and stocking densities. Aquaculture, 528: 735526. https://doi.org/10.1016/j.aquaculture.2020.735526
  • Kaya, D., Genc, M. A., Aktas, M., Yavuzcan, H., Ozmen, O. & Genc, E. (2019a). Effect of biofloc technology on growth of Speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquaculture Research, 50(10): 2760-2768. https://doi.org/10.1111/are.14228
  • Kaya, D., Genc, M. A., Aktas, M., Eroldogan, O. T., Aydin, F. G. & Genc, E. (2019b). Effects of Biofloc Technology (BFT) on growth of Speckled shrimp (Metapenaeus monoceros). Journal of Agricultural Sciences, 25(4):491-497. https://doi.org/10.15832/ankutbd.441745
  • Kim, S. K., Pang, Z., Seo, H. C., Cho Y. R., Samocha, T. & Jang I. K. (2014). Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquaculture Research, 45(2): 362-371. https://doi.org/10.1111/are.12319
  • Kumar, S., Anand, P. S. S., De, D., Deo, A. D., Ghoshal, T. K., Sundaray, J. K., Ponniah, A. G., Jithendran, K. P., Raja, R. A., Biswas G. & Lalitha, N. (2017). Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp Penaeus monodon (Fabricius, 1978). Aquaculture Research, 48(3): 1168-1182. https://doi.org/10.1111/are.12958
  • Legarda, E. C., Poli, M. A., Martins, M. A., Pereira, S. A., Martins M. L., Machado C., Lorenzo, M. A. D. & Vieira, F. D. N. (2019). Integrated recirculating aquaculture system for mullet and shrimp using biofloc technology. Aquaculture, 512: 734308. https://doi.org/10.1016/j.aquaculture.2019.734308
  • Luna, G. L. (1968). Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed. (p. 32-34). New York: McGraw Hill Book.
  • NRC (National Research Council), (2011). Nutrient requirements of fish and shrimp. National academies press. Otoshi, C. A., Arce, S. M., & Moss, S. M. (2003). Growth and reproductive performance of broodstock shrimp reared in a biosecure recirculating aquaculture system versus a flow-through pond. Aquacultural Engineering, 29(3-4): 93-107. https://doi.org/10.1016/S0144-8609(03)00048-7
  • Putra, I., Rusliadi, R., Fauzi, M., Tang, U. M. & Muchlisin, Z. A. (2017). Growth performance and feed utilization of African catfish Clarias gariepinus fed a commercial diet and reared in the biofloc system enhanced with probiotic. F1000Research, 6:1545. https://doi.org/10.12688/f1000research.12438.1
  • Ray, A. J., Drury, T. H. & Cecil, A. (2017). Comparing clear-water RAS and biofloc systems: Shrimp (Litopenaeus vannamei) production, water quality, and biofloc nutritional contributions estimated using stable isotopes. Aquacultural Engineering, 77: 9-14. https://doi.org/10.1016/j.aquaeng.2017.02.002
  • Ray, A. J., Shuler, A. J., Leffler, J. W. & Browdy, C. L. (2009). Microbial ecology and management of biofloc systems. The rising tide. Proceedings of the special session on sustainable shrimp farming. The World Aquaculture Society, Baton Rouge, p. 255-266.
  • Samocha, T. M. (2019). Sustainable biofloc systems for marine shrimp. Academic Press.
  • Saraswathy, R., Muralidhar, M., Sundaray, J. K., Lalitha, N. & Kumararaja, P. (2015). Water quality management in fish hatchery and grow-out systems. In Advances in Marine and Brackishwater Aquaculture (p. 217-225). Springer, New Delhi.
  • Tierney, T. W., & Ray, A. J. (2018). Comparing biofloc, clear-water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics. Aquacultural Engineering, 82: 73-79. https://doi.org/10.1016/j.aquaeng.2018.06.002
  • Xu, W. L., Pan, L. Q. Sun, X. H. & Huang, J. 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquaculture Research, 44(7): 1093-1102. https://doi.org/10.1111/j.1365-2109.2012.03115.x
  • Vogt, G. (2019). Functional cytology of the hepatopancreas of decapod crustaceans. Journal of Morphology, 280(9): 1405-1444. https://doi.org/10.1002/jmor.21040
  • Wang, C., Pan, L., Zhang, K., Xu, W., Zhao, D. & Mei, L. (2016). Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks. Aquaculture Research, 47(10): 3307-3318. https://doi.org/10.1111/are.12784
  • Yang, J., Ni, Q., Zhang, Y. & Xu, B. (2010). Construction technology on RAS for shrimp culture. Transactions of the Chinese Society of Agricultural Engineering, 26(8): 136-140.

Biyoyumak teknolojisinin Yeşil kaplan karidesi (Penaeus semisulcatus) postlarvalarının yetiştiricilik parametreleri üzerine etkileri

Year 2022, Volume: 4 Issue: 1, 77 - 83, 30.06.2022
https://doi.org/10.51756/marlife.1115778

Abstract

Bu araştırmada yeşil kaplan karidesi (Penaeus semisulcatus) postlarvaları (başlangıç canlı ağırlıkları 0,14±0,04 g) kapalı devre yetiştiricilik sisteminde biyoyumak (BF) ve berrak su (BS) ortamlarında karşılaştırmalı olarak 54 gün süreyle büyütülmüşlerdir. Üç tekerrürlü iki grup olarak planlanan deneme ‰35±0,5 tuzlulukta, 45 L hacimli tanklarda yürütülmüştür. Su sıcaklığı, pH ve çözünmüş oksijen değerleri sırasıyla; BF grubu için 27,02±0,33°C, 7,65±0,08, 6,23±0,41 mg/L ve BS grubu için 27,05±0,24°C, 7,57±0,11, 6,44±0,22 mg/L olarak belirlenmiştir. Sonuç canlı ağırlık kazancı (BF: 2,423±0,327 g, BS: 1,814±0,103 g), spesifik büyüme oranı (BF: %5,329±0,159 g/gün, BS: %4,845±0,085 g/gün), yaşama oranı (BF: %62,50±2,50, BS: %51,67±5,20) ve yem değerlendirme oranı (BF: 2,12±0,23, BS: 2,71±0,15) bakımından gruplar arasındaki farklılık önemli bulunmuştur (p<0,05). Araştırma ile BF uygulamasının yeşil kaplan karidesi postlarvalarının yetiştiricilik parametrelerine ilk kez pozitif bir etkisi olduğu belirlenirken (p<0,05), besin madde bileşenleri ve hepatopankreas histomorfojileri arasında gruplar arasında farklılık olmadığı saptanmıştır.

References

  • AOAC, (2000). Official methods of analysis of AOAC international (17th ed.). Maryland: AOAC International.
  • Avnimelech, Y. (2009). Biofloc technology: a practical guidebook. The World Aquaculture Society.
  • Avnimelech, Y. (2012). Biofloc-based aquaculture systems. Aquaculture Production Systems. New Delhi, India.
  • Azhar, M. H., Suciyono, S., Budi, D. S., Ulkhaq, M. F., Anugrahwati, M. & Ekasari, J. (2020). Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon-nitrogen ratios. Aquaculture International, 28: 1293-1304. https://doi.org/10.1007/s10499-020-00526-z
  • Azim, M. E. & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4): 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036
  • Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tokmechi, A., Farah, K. R. & Jalali, A. S. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquaculture Research, 49: 393-403. https://doi.org/10.1111/are.13469
  • Chen, Z., Ge, H., Chang, Z., Song, X., Zhao, F. & Li, J. (2018). Nitrogen budget in recirculating aquaculture and water exchange systems for culturing Litopenaeus vannamei. Journal of Ocean University of China, 17(4): 905-912. https://doi.org/10.1007/s11802-018-3584-9
  • Dauda, A. B. (2020). Biofloc technology: a review on thr microbial interactions, operational parameters and implications to disease and health managment of cultured aquatic animals. Reviews in Aquaculture, 12(2): 1193-1210. https://doi.org/10.1111/raq.12379
  • Ebeling, J. M. & Timmons, M. B. (2012). Recirculating aquaculture systems. Aquaculture Production Systems, 1:245-277. https://doi.org/10.1002/9781118250105
  • Ekasari, J. & Maryam, S., (2012). Evaluation of biofloc technology application on water quality and production performance of Red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, 19(2): 73-80. https://doi.org/10.4308/hjb.19.2.73
  • Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M. & Miranda-Baeza, A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water quality, 5: 92-109. https://doi.org/10.5772/66416
  • Emerenciano, M., Ballester, E. L., Cavalli, R. O. & Wasielesky, W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3): 447-457. https://doi.org/10.1111/j.1365-2109.2011.02848.x
  • Genc, M. A., Aktas, M., Genc, E. & Yilmaz, E. (2007). Effects of dietary mannan oligosaccharide on growth, body composition and hepatopancreas histology of Penaeus semisulcatus (de Haan 1844). Aquaculture Nutrition, 13(2):156-161. https://doi.org/10.1111/j.1365-2095.2007.00469.x
  • Haghparast, M. M., Alishahi, M., Ghorbanpour, M. & Shahriari, A. (2020). Evaluation of hemato-immunological parameters and stress indicators of common carp (Cyprinus carpio) in different C/N ratio of biofloc system. Aquaculture International, 28: 2191-2206. https://doi.org/10.1007/s10499-020-00578-1
  • Hargreaves, J. A. (2013). Biofloc production systems for aquaculture 4503: 1-11. Stoneville, MS: Southern Regional Aquaculture Center.
  • Johnson, P. T. (1980). Histology of the Blue Crab, Callinectes sapidus: A model for the Decapoda. Praeger, New York.
  • Kasan, N. A., Manan, H., Ismail, T. I. T., Salam, A. I. A., Rahim, A. I, A., Kamarruzan, A. S., Ishak, A. N., Deraman, S., Nasrin, Z., Chik, C. E. N. C. E., Hashim, N. F. C. & Iber, B. T. (2021). Effect of Biofloc product-Rapid BFTTM vs. clear water system in improving the water quality and growth performances of Pacific Whiteleg shrimp, P. vannamei, cultured in indoor aquaculture system. Aquaculture Research, 52(12): 6504-6513. https://doi.org/10.1111/are.15519
  • Kaya, D. & Genc, E. (2018). Su ürünleri yetiştiriciliğinde biyoyumak teknolojisi. Su Ürünleri Dergisi, 35(2): 219-225. https://doi.org/10.12714/egejfas.2018.35.2.16
  • Kaya, D., Genc, E., Genc, M. A., Aktas, M., Eroldogan, O. T. & Guroy, D. (2020). Biofloc technology in recirculating aquaculture system as a culture model for green tiger shrimp, Penaeus semisulcatus: Effects of different feeding rates and stocking densities. Aquaculture, 528: 735526. https://doi.org/10.1016/j.aquaculture.2020.735526
  • Kaya, D., Genc, M. A., Aktas, M., Yavuzcan, H., Ozmen, O. & Genc, E. (2019a). Effect of biofloc technology on growth of Speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquaculture Research, 50(10): 2760-2768. https://doi.org/10.1111/are.14228
  • Kaya, D., Genc, M. A., Aktas, M., Eroldogan, O. T., Aydin, F. G. & Genc, E. (2019b). Effects of Biofloc Technology (BFT) on growth of Speckled shrimp (Metapenaeus monoceros). Journal of Agricultural Sciences, 25(4):491-497. https://doi.org/10.15832/ankutbd.441745
  • Kim, S. K., Pang, Z., Seo, H. C., Cho Y. R., Samocha, T. & Jang I. K. (2014). Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquaculture Research, 45(2): 362-371. https://doi.org/10.1111/are.12319
  • Kumar, S., Anand, P. S. S., De, D., Deo, A. D., Ghoshal, T. K., Sundaray, J. K., Ponniah, A. G., Jithendran, K. P., Raja, R. A., Biswas G. & Lalitha, N. (2017). Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp Penaeus monodon (Fabricius, 1978). Aquaculture Research, 48(3): 1168-1182. https://doi.org/10.1111/are.12958
  • Legarda, E. C., Poli, M. A., Martins, M. A., Pereira, S. A., Martins M. L., Machado C., Lorenzo, M. A. D. & Vieira, F. D. N. (2019). Integrated recirculating aquaculture system for mullet and shrimp using biofloc technology. Aquaculture, 512: 734308. https://doi.org/10.1016/j.aquaculture.2019.734308
  • Luna, G. L. (1968). Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed. (p. 32-34). New York: McGraw Hill Book.
  • NRC (National Research Council), (2011). Nutrient requirements of fish and shrimp. National academies press. Otoshi, C. A., Arce, S. M., & Moss, S. M. (2003). Growth and reproductive performance of broodstock shrimp reared in a biosecure recirculating aquaculture system versus a flow-through pond. Aquacultural Engineering, 29(3-4): 93-107. https://doi.org/10.1016/S0144-8609(03)00048-7
  • Putra, I., Rusliadi, R., Fauzi, M., Tang, U. M. & Muchlisin, Z. A. (2017). Growth performance and feed utilization of African catfish Clarias gariepinus fed a commercial diet and reared in the biofloc system enhanced with probiotic. F1000Research, 6:1545. https://doi.org/10.12688/f1000research.12438.1
  • Ray, A. J., Drury, T. H. & Cecil, A. (2017). Comparing clear-water RAS and biofloc systems: Shrimp (Litopenaeus vannamei) production, water quality, and biofloc nutritional contributions estimated using stable isotopes. Aquacultural Engineering, 77: 9-14. https://doi.org/10.1016/j.aquaeng.2017.02.002
  • Ray, A. J., Shuler, A. J., Leffler, J. W. & Browdy, C. L. (2009). Microbial ecology and management of biofloc systems. The rising tide. Proceedings of the special session on sustainable shrimp farming. The World Aquaculture Society, Baton Rouge, p. 255-266.
  • Samocha, T. M. (2019). Sustainable biofloc systems for marine shrimp. Academic Press.
  • Saraswathy, R., Muralidhar, M., Sundaray, J. K., Lalitha, N. & Kumararaja, P. (2015). Water quality management in fish hatchery and grow-out systems. In Advances in Marine and Brackishwater Aquaculture (p. 217-225). Springer, New Delhi.
  • Tierney, T. W., & Ray, A. J. (2018). Comparing biofloc, clear-water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics. Aquacultural Engineering, 82: 73-79. https://doi.org/10.1016/j.aquaeng.2018.06.002
  • Xu, W. L., Pan, L. Q. Sun, X. H. & Huang, J. 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquaculture Research, 44(7): 1093-1102. https://doi.org/10.1111/j.1365-2109.2012.03115.x
  • Vogt, G. (2019). Functional cytology of the hepatopancreas of decapod crustaceans. Journal of Morphology, 280(9): 1405-1444. https://doi.org/10.1002/jmor.21040
  • Wang, C., Pan, L., Zhang, K., Xu, W., Zhao, D. & Mei, L. (2016). Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks. Aquaculture Research, 47(10): 3307-3318. https://doi.org/10.1111/are.12784
  • Yang, J., Ni, Q., Zhang, Y. & Xu, B. (2010). Construction technology on RAS for shrimp culture. Transactions of the Chinese Society of Agricultural Engineering, 26(8): 136-140.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Zoology
Journal Section Research Articles
Authors

Türkan Tüfek 0000-0002-2736-6745

Münevver Ayçe Genç 0000-0002-9838-8423

Publication Date June 30, 2022
Submission Date May 12, 2022
Acceptance Date May 28, 2022
Published in Issue Year 2022 Volume: 4 Issue: 1

Cite

APA Tüfek, T., & Genç, M. A. (2022). Biyoyumak teknolojisinin Yeşil kaplan karidesi (Penaeus semisulcatus) postlarvalarının yetiştiricilik parametreleri üzerine etkileri. Marine and Life Sciences, 4(1), 77-83. https://doi.org/10.51756/marlife.1115778

Flag Counter