Review
BibTex RIS Cite

Plants as a Nanocomposite Source and Field of Application

Year 2018, Volume: 30 Issue: 4, 429 - 436, 31.12.2018
https://doi.org/10.7240/marufbd.357278

Abstract

Nanocomposites,
play a key role in several industries due to their unique customizable
properties and modifiable functions. 
Many plant nanopolymer researches, such as cellulose, lignin, have
become the focus of attention in different sectors for meeting the increasing
raw material needs and producing ecologically compatible alternative
nanomaterials. Plants are application field of nanocomposite materials at the
same time which are source of nanocomposite material production. In crop
production processes, nanocomposites are used to reduce the toxicity of
agrochemicals, plant growth regulators and mineral nutrient transport,
controlled and targeted agrochemical release. This review focused on the latest
developments in the use of plant materials which are used as nanocomposite
sources and nanocomposites on plant production.

References

  • Feynman, R. P. (1960). There's plenty of room at the bottom. Engineering and Science, 23(5), 22-36.
  • Taniguchi, N. (1974). On the basic concept of nano-technology. In Proc. Intl. Conf. Prod. London, 1974. British Society of Precision Engineering.
  • Agrawal, U., Sharma, R., Gupta, M., & Vyas, S. P. (2014). Is nanotechnology a boon for oral drug delivery? Drug Discovery Today, 19(10), 1530-1546.
  • EPA, (2007). Nanotechnology White Paper. U.S. Environmental Protection Agency publication. Washington, DC. Available at: http://www.epa.gov/nanoscience/files/epa_nano_wp_2007.pdf (accessed 01.22.11.).
  • Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179(3), 154-163.
  • Draz, M. S., Fang, B. A., Zhang, P., Hu, Z., Gu, S., Weng, K. C., Gray, J. W., & Chen, F. F. (2014). Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 4(9), 872.
  • Mu, L., & Seow, P. H. (2006). Application of TPGS in polymeric nanoparticulate drug delivery system. Colloids and Surfaces B: Biointerfaces, 47(1), 90-97.
  • Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., Bindraban, P., & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17(2), 92.
  • Bordi, F., Chronopoulou, L., Palocci, C., Bomboi, F., Di Martino, A., Cifani, N., Pompili, B., Ascenzioni, F., & Sennato, S. (2014). Chitosan–DNA complexes: effect of molecular parameters on the efficiency of delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460, 184-190.
  • Adeosun, S. O., Lawal, G. I., Balogun, S. A., & Akpan, E. I. (2012). Review of green polymer nanocomposites. Journal of Minerals and Materials Characterization and Engineering, 11(04), 385.
  • Leja, K., & Lewandowicz, G. (2010). Polymer Biodegradation and Biodegradable Polymers-a Review. Polish Journal of Environmental Studies, 19(2).
  • Luykx, D. M., Peters, R. J., van Ruth, S. M., & Bouwmeester, H. (2008). A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56(18), 8231-8247.
  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26(6).
  • Sharon, M., Choudhary, A. K., & Kumar, R. (2010). Nanotechnology in agricultural diseases and food safety. Journal of Phytology, 2(4).
  • Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly‐Lactic Acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571.
  • Lal, R. (2016). Global food security and nexus thinking. Journal of Soil and Water Conservation, 71(4), 85A-90A.
  • Meena, R. S., Meena, V. S., Meena, S. K., & Verma, J. P. (2015). The needs of healthy soils for a healthy world. Journal of Cleaner Production, (102), 560-561.
  • Mousavi, S. R., & Rezaei, M. (2011). Nanotechnology in agriculture and food production. Journal of Applied Environmental and Biological Sciences, 1(10), 414-419.
  • La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588.
  • Khalil, H. A., Bhat, A. H., & Yusra, A. I. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979.
  • Takagi, H., & Asano, A. (2008). Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Composites Part A: Applied Science and Manufacturing, 39(4), 685-689.
  • Pandey, J. K., Chu, W. S., Lee, C. S., & Ahn, S. H. (2007, October). Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. In International Symposium on Polymers and the Environment: Emerging Technology and Science, BioEnvironmental Polymer Society (BEPS).
  • Manna, U., & Patil, S. (2009). Borax mediated layer-by-layer self-assembly of neutral poly (vinyl alcohol) and chitosan. The Journal of Physical Chemistry B, 113(27), 9137-9142.
  • Cota‐Arriola, O., Onofre Cortez‐Rocha, M., Burgos‐Hernández, A., Marina Ezquerra‐Brauer, J., & Plascencia‐Jatomea, M. (2013). Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. Journal of the Science of Food and Agriculture, 93(7), 1525-1536.
  • Zhang, X., Do, M. D., Dean, K., Hoobin, P., & Burgar, I. M. (2007). Wheat-gluten-based natural polymer nanoparticle composites. Biomacromolecules, 8(2), 345-353.
  • Kanmani, P., & Rhim, J. W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190-199.
  • Khalil, H. A., Hanida, S., Kang, C. W., & Fuaad, N. N. (2007). Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites. Journal of Reinforced Plastics and Composites, 26(2), 203-218.
  • Khalil, H. A., Issam, A. M., Shakri, M. A., Suriani, R., & Awang, A. Y. (2007). Conventional agro-composites from chemically modified fibres. Industrial Crops and Products, 26(3), 315-323.
  • Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., ... & Gindl, W. (2010). current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1.
  • DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91-91.
  • Campos, E. V. R., de Oliveira, J. L., & Fraceto, L. F. (2014). Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Advanced Science, Engineering and Medicine, 6(4), 373-387.
  • Grillo, R., Abhilash, P. C., & Fraceto, L. F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16(1), 1231-1234.
  • Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: which innovation potential does it have?. Frontiers in Environmental Science, 4, 20.
  • Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One, 9(5), e97881.
  • Ihegwuagu, N. E., Sha'Ato, R., Tor-Anyiin, T. A., Nnamonu, L. A., Buekes, P., Sone, B., & Maaza, M. (2016). Facile formulation of starch–silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New Journal of Chemistry, 40(2), 1777-1784.
  • Sekhon, B. S. (2014). Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications, 7, 31.
  • Maruyama, C. R., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P. C., Fraceto, L. F., & De Lima, R. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Scientific Reports, 6, 19768.
  • de Oliveira, J. L., Campos, E. V. R., Gonçalves da Silva, C. M., Pasquoto, T., Lima, R., & Fraceto, L. F. (2015). Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. Journal of Agricultural and Food Chemistry, 63(2), 422-432.
  • Campos, E. V. R., De Oliveira, J. L., Da Silva, C. M. G., Pascoli, M., Pasquoto, T., Lima, R., ... & Fraceto, L. F. (2015). Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Scientific Reports, 5, 13809.
  • Elek, N., Hoffman, R., Raviv, U., Resh, R., Ishaaya, I., & Magdassi, S. (2010). Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372(1), 66-72.
  • Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection, 35, 64-70.
  • Hill, M. R., MacKrell, E. J., Forsthoefel, C. P., Jensen, S. P., Chen, M., Moore, G. A., ... & Sumerlin, B. S. (2015). Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture. Biomacromolecules, 16(4), 1276-1282.
  • Theato, P., Sumerlin, B. S., O'Reilly, R. K., & Epps III, T. H. (2013). Stimuli responsive materials. Chemical Society Reviews, 42(17), 7055-7056.
  • Fleischer, A., O'Neill, M. A., & Ehwald, R. (1999). The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology, 121(3), 829-838.
  • Nakasato, D. Y., Pereira, A. E., Oliveira, J. L., Oliveira, H. C., & Fraceto, L. F. (2017). Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum. Ecotoxicology and Environmental Safety, 142, 369-374.
  • Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302-309.
  • Rajeshwari, A., Kavitha, S., Alex, S. A., Kumar, D., Mukherjee, A., Chandrasekaran, N., & Mukherjee, A. (2015). Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environmental Science and Pollution Research, 22(14), 11057-11066.
  • Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221-3227.
  • Liu, R., Zhang, H., & Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients?. Water, Air, & Soil Pollution, 227(1), 42.
  • Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., ... & Sarret, G. (2014). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials, 264, 98-106.
  • Zhu, Z. J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O. R., ... & Vachet, R. W. (2012). Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environmental Science & Technology, 46(22), 12391-12398.
  • Kashyap, P.L., Xiang, X. & Heiden, P., (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, pp.36-51.
  • Pereira, A. E., Grillo, R., Mello, N. F., Rosa, A. H., & Fraceto, L. F. (2014). Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials, 268, 207-215.
  • Oliveira, H. C., Stolf-Moreira, R., Martinez, C. B., Sousa, G. F., Grillo, R., de Jesus, M. B., & Fraceto, L. F. (2015). Evaluation of the side effects of poly (epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Frontiers in chemistry, 3.
  • Oliveira, H. C., Stolf-Moreira, R., Martinez, C. B. R., Grillo, R., de Jesus, M. B., & Fraceto, L. F. (2015). Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PloS One, 10(7), e0132971.
  • Khater, H. F. (2012). Ecosmart biorational insecticides: alternative insect control strategies. In Insecticides-Advances in Integrated Pest Management. InTech.
  • Forim, M. R., Costa, E. S., da Silva, M. F. D. G. F., Fernandes, J. B., Mondego, J. M., & Boiça Junior, A. L. (2013). Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. Journal of Agricultural and Food Chemistry, 61(38), 9131-9139.
  • Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60(39), 9781-9792.
  • Scott, N., & Chen, H. (2013). Nanoscale science and engineering for agriculture and food systems. Industrial Biotechnology, 9(1), 17-18.
  • de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances, 32(8), 1550-1561.
  • Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29(6), 792-803.
  • Duran, N., & Marcato, P. D. (2013). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science & Technology, 48(6), 1127-1134.
  • Tramon, C. (2014). Modeling the controlled release of essential oils from a polymer matrix—a special case. Industrial Crops and Products, 61, 23-30.
  • Kah, M. (2015). Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Frontiers in Chemistry, 3.
  • Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K. K., & Minhas, P. S. (2015). Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Research Letters, 10(1), 371.
  • Frederiksen, H. K., Kristensen, H. G., & Pedersen, M. (2003). Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin—incompatibility of the lipid and the pyrethroid and biological properties of the formulations. Journal of controlled release, 86(2), 243-252.
  • Liu, F., Wen, L. X., Li, Z. Z., Yu, W., Sun, H. Y., & Chen, J. F. (2006). Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Materials Research Bulletin, 41(12), 2268-2275.
  • Wang, L., Li, X., Zhang, G., Dong, J. & Eastoe, J., (2007). Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 314(1), pp.230-235.
  • Bhagat, D., Samanta, S. K., & Bhattacharya, S. (2013). Efficient management of fruit pests by pheromone nanogels. Scientific Reports, 3.
  • Sonkar, S. K., Roy, M., Babar, D. G., & Sarkar, S. (2012). Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale, 4(24), 7670-7675.
  • Yildiz, N., & Pala, A. (2012). Effects of small-diameter silver nanoparticles on microbial load in cow milk. Journal of Dairy Science, 95(3), 1119-1127.
  • Hussain, H. I., Yi, Z., Rookes, J. E., Kong, L. X., & Cahill, D. M. (2013). Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. Journal of Nanoparticle Research, 15(6), 1676.
  • Wen, L. X., Li, Z. Z., Zou, H. K., Liu, A. Q., & Chen, J. F. (2005). Controlled release of avermectin from porous hollow silica nanoparticles. Pest Management Science, 61(6), 583-590.
  • Ogunleye, A., Bhat, A., Irorere, V. U., Hill, D., Williams, C., & Radecka, I. (2015). Poly-(-glutamic acid: Production, properties and applications. Microbiology (Reading, England), 161 (Pt 1), 1–17.
  • Chang, J., Zhong, Z., Hong, X. U., Zhong, Y. A. O., & Rizhi, C. H. E. N. (2013). Fabrication of poly (γ-glutamic acid)-coated Fe3O4 magnetic nanoparticles and their application in heavy metal removal. Chinese Journal of Chemical Engineering, 21(11), 1244-1250.
  • Perlatti, B., de Souza Bergo, P. L., Fernandes, J. B., & Forim, M. R. (2013). Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In Insecticides-Development of Safer and More Effective Technologies. InTech.
  • Varma, M. V., Kaushal, A. M., Garg, A., & Garg, S. (2004). Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. American Journal of Drug Delivery, 2(1), 43-57.
  • Chronopoulou, L., Massimi, M., Giardi, M. F., Cametti, C., Devirgiliis, L. C., Dentini, M., & Palocci, C. (2013). Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids and Surfaces B: Biointerfaces, 103, 310-317.
  • Valletta, A., Chronopoulou, L., Palocci, C., Baldan, B., Donati, L., & Pasqua, G. (2014). Poly (lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. Journal of Nanoparticle Research, 16(12), 2744.
  • Faisant, N., Siepmann, J., & Benoit, J. P. (2002). PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. European Journal of Pharmaceutical Sciences, 15(4), 355-366.
  • Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture: prospects and constraints. Nanotechnology, Science and Applications, 7, 63.
  • Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1014.
  • Prasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology, 13(6), 705-713.
  • Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. The Scientific World Journal, 2014.
  • Pereira, A. E. S., Sandoval-Herrera, I. E., Zavala-Betancourt, S. A., Oliveira, H. C., Ledezma-Pérez, A. S., Romero, J., & Fraceto, L. F. (2017). γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate Polymers, 157, 1862-1873.
  • Quiñones, J. P., García, Y. C., Curiel, H., & Covas, C. P. (2010). Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydrate Polymers, 80(3), 915-921.
  • Tao, S., Pang, R., Chen, C., Ren, X., & Hu, S. (2012). Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydrate Polymers, 88(4), 1189-1194.
  • Oliveira, H. C., Gomes, B. C., Pelegrino, M. T., & Seabra, A. B. (2016). Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide, 61, 10-19.
  • McDaniel, E., Chen, I., Balogh, E., Yang, Y., & Ghoshroy, S. (2013). Structural analysis of plants exposed to titanium dioxide (TiO2) nanoparticles. Microscopy and Microanalysis, 19(S2), 104-105.
  • Liu, Y., Sun, Y., He, S., Zhu, Y., Ao, M., Li, J., & Cao, Y. (2013). Synthesis and characterization of gibberellin–chitosan conjugate for controlled-release applications. International Journal of Biological Macromolecules, 57, 213-217.
  • Hafez, I. H., Berber, M. R., Minagawa, K., Mori, T., & Tanaka, M. (2010). Design of a multifunctional nanohybrid system of the phytohormone gibberellic acid using an inorganic layered double-hydroxide material. Journal of Agricultural and Food Chemistry, 58(18), 10118-10123.
  • Fernández, A., Picouet, P., & Lloret, E. (2010). Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. International Journal of Food Microbiology, 142(1), 222-228.
  • Perreault, F., Popovic, R., & Dewez, D. (2014). Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environmental Pollution, 185, 219-227.
  • Nguyen, H. C., Nguyen, T. T., Dao, T. H., Ngo, Q. B., Pham, H. L., & Nguyen, T. B. N. (2016). Preparation of Ag/SiO2 nanocomposite and assessment of its antifungal effect on soybean plant (a Vietnamese species DT-26). Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(4), 045014.
  • Zhou, L., Zhao, P., Chi, Y., Wang, D., Wang, P., Liu, N. & Zhong, N. (2017). Controlling the Hydrolysis and Loss of Nitrogen Fertilizer (Urea) by using a Nanocomposite Favors Plant Growth. ChemSusChem, 10(9), 2068-2079.
  • Gunaratne, G. P., Kottegoda, N., Madusanka, N., Munaweera, I., Sandaruwan, C., Priyadarshana, W. M. G. I. & Karunaratne, V. (2016). Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: Efficacy and plant uptake. Indian Journal of Agricultural Science, 86(4).
  • Ao, M., Zhu, Y., He, S., Li, D., Li, P., Li, J., & Cao, Y. (2012). Preparation and characterization of 1-naphthylacetic acid–silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology, 24(3), 035601.
  • Ashfaq, M., Verma, N., & Khan, S. (2017). Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environmental Science: Nano, 4(1), 138-148.

Nanokompozit Kaynağı ve Uygulama Alanı Olarak Bitkiler

Year 2018, Volume: 30 Issue: 4, 429 - 436, 31.12.2018
https://doi.org/10.7240/marufbd.357278

Abstract

Nanokompozitler, ihtiyaca yönelik tasarlanabilir eşsiz
özellikleri ve değiştirilebilir fonksiyonları nedeniyle çeşitli endüstrilerde
kilit rol oynamaktadırlar. Artan hammadde ihtiyaçlarını karşılamada ve ekolojik
uyumlu alternatif nanomateryallerin üretiminde, selüloz, lignin gibi birçok
bitkisel nanopolimer araştırmaları farklı sektörlerin ilgi odağı olmaktadır.
Nanokompozit materyallerin üretiminde kaynak olarak kullanılan bitkiler aynı
zamanda nanokompozit materyaller için uygulama alanı da oluşturmaktadırlar.
Bitkisel üretim süreçlerinde nanokompozitler, agrokimyasalların toksisitesinin
azaltılması, bitki büyüme düzenleyicileri ve mineral besleyicilerin taşınımı,
kontrollü ve hedeflenmiş ilaç salınımında kullanılmaktadırlar. Bu makale,
nanokompozit kaynağı olarak kullanılan bitkisel materyaller ve
nanokompozitlerin bitkisel üretimde kullanımı konusundaki son gelişmelere
odaklanmıştır. 

References

  • Feynman, R. P. (1960). There's plenty of room at the bottom. Engineering and Science, 23(5), 22-36.
  • Taniguchi, N. (1974). On the basic concept of nano-technology. In Proc. Intl. Conf. Prod. London, 1974. British Society of Precision Engineering.
  • Agrawal, U., Sharma, R., Gupta, M., & Vyas, S. P. (2014). Is nanotechnology a boon for oral drug delivery? Drug Discovery Today, 19(10), 1530-1546.
  • EPA, (2007). Nanotechnology White Paper. U.S. Environmental Protection Agency publication. Washington, DC. Available at: http://www.epa.gov/nanoscience/files/epa_nano_wp_2007.pdf (accessed 01.22.11.).
  • Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179(3), 154-163.
  • Draz, M. S., Fang, B. A., Zhang, P., Hu, Z., Gu, S., Weng, K. C., Gray, J. W., & Chen, F. F. (2014). Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 4(9), 872.
  • Mu, L., & Seow, P. H. (2006). Application of TPGS in polymeric nanoparticulate drug delivery system. Colloids and Surfaces B: Biointerfaces, 47(1), 90-97.
  • Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., Bindraban, P., & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17(2), 92.
  • Bordi, F., Chronopoulou, L., Palocci, C., Bomboi, F., Di Martino, A., Cifani, N., Pompili, B., Ascenzioni, F., & Sennato, S. (2014). Chitosan–DNA complexes: effect of molecular parameters on the efficiency of delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460, 184-190.
  • Adeosun, S. O., Lawal, G. I., Balogun, S. A., & Akpan, E. I. (2012). Review of green polymer nanocomposites. Journal of Minerals and Materials Characterization and Engineering, 11(04), 385.
  • Leja, K., & Lewandowicz, G. (2010). Polymer Biodegradation and Biodegradable Polymers-a Review. Polish Journal of Environmental Studies, 19(2).
  • Luykx, D. M., Peters, R. J., van Ruth, S. M., & Bouwmeester, H. (2008). A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56(18), 8231-8247.
  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26(6).
  • Sharon, M., Choudhary, A. K., & Kumar, R. (2010). Nanotechnology in agricultural diseases and food safety. Journal of Phytology, 2(4).
  • Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly‐Lactic Acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571.
  • Lal, R. (2016). Global food security and nexus thinking. Journal of Soil and Water Conservation, 71(4), 85A-90A.
  • Meena, R. S., Meena, V. S., Meena, S. K., & Verma, J. P. (2015). The needs of healthy soils for a healthy world. Journal of Cleaner Production, (102), 560-561.
  • Mousavi, S. R., & Rezaei, M. (2011). Nanotechnology in agriculture and food production. Journal of Applied Environmental and Biological Sciences, 1(10), 414-419.
  • La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588.
  • Khalil, H. A., Bhat, A. H., & Yusra, A. I. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979.
  • Takagi, H., & Asano, A. (2008). Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Composites Part A: Applied Science and Manufacturing, 39(4), 685-689.
  • Pandey, J. K., Chu, W. S., Lee, C. S., & Ahn, S. H. (2007, October). Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. In International Symposium on Polymers and the Environment: Emerging Technology and Science, BioEnvironmental Polymer Society (BEPS).
  • Manna, U., & Patil, S. (2009). Borax mediated layer-by-layer self-assembly of neutral poly (vinyl alcohol) and chitosan. The Journal of Physical Chemistry B, 113(27), 9137-9142.
  • Cota‐Arriola, O., Onofre Cortez‐Rocha, M., Burgos‐Hernández, A., Marina Ezquerra‐Brauer, J., & Plascencia‐Jatomea, M. (2013). Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. Journal of the Science of Food and Agriculture, 93(7), 1525-1536.
  • Zhang, X., Do, M. D., Dean, K., Hoobin, P., & Burgar, I. M. (2007). Wheat-gluten-based natural polymer nanoparticle composites. Biomacromolecules, 8(2), 345-353.
  • Kanmani, P., & Rhim, J. W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190-199.
  • Khalil, H. A., Hanida, S., Kang, C. W., & Fuaad, N. N. (2007). Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites. Journal of Reinforced Plastics and Composites, 26(2), 203-218.
  • Khalil, H. A., Issam, A. M., Shakri, M. A., Suriani, R., & Awang, A. Y. (2007). Conventional agro-composites from chemically modified fibres. Industrial Crops and Products, 26(3), 315-323.
  • Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., ... & Gindl, W. (2010). current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1.
  • DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91-91.
  • Campos, E. V. R., de Oliveira, J. L., & Fraceto, L. F. (2014). Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Advanced Science, Engineering and Medicine, 6(4), 373-387.
  • Grillo, R., Abhilash, P. C., & Fraceto, L. F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16(1), 1231-1234.
  • Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: which innovation potential does it have?. Frontiers in Environmental Science, 4, 20.
  • Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One, 9(5), e97881.
  • Ihegwuagu, N. E., Sha'Ato, R., Tor-Anyiin, T. A., Nnamonu, L. A., Buekes, P., Sone, B., & Maaza, M. (2016). Facile formulation of starch–silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New Journal of Chemistry, 40(2), 1777-1784.
  • Sekhon, B. S. (2014). Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications, 7, 31.
  • Maruyama, C. R., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P. C., Fraceto, L. F., & De Lima, R. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Scientific Reports, 6, 19768.
  • de Oliveira, J. L., Campos, E. V. R., Gonçalves da Silva, C. M., Pasquoto, T., Lima, R., & Fraceto, L. F. (2015). Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. Journal of Agricultural and Food Chemistry, 63(2), 422-432.
  • Campos, E. V. R., De Oliveira, J. L., Da Silva, C. M. G., Pascoli, M., Pasquoto, T., Lima, R., ... & Fraceto, L. F. (2015). Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Scientific Reports, 5, 13809.
  • Elek, N., Hoffman, R., Raviv, U., Resh, R., Ishaaya, I., & Magdassi, S. (2010). Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372(1), 66-72.
  • Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection, 35, 64-70.
  • Hill, M. R., MacKrell, E. J., Forsthoefel, C. P., Jensen, S. P., Chen, M., Moore, G. A., ... & Sumerlin, B. S. (2015). Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture. Biomacromolecules, 16(4), 1276-1282.
  • Theato, P., Sumerlin, B. S., O'Reilly, R. K., & Epps III, T. H. (2013). Stimuli responsive materials. Chemical Society Reviews, 42(17), 7055-7056.
  • Fleischer, A., O'Neill, M. A., & Ehwald, R. (1999). The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology, 121(3), 829-838.
  • Nakasato, D. Y., Pereira, A. E., Oliveira, J. L., Oliveira, H. C., & Fraceto, L. F. (2017). Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum. Ecotoxicology and Environmental Safety, 142, 369-374.
  • Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302-309.
  • Rajeshwari, A., Kavitha, S., Alex, S. A., Kumar, D., Mukherjee, A., Chandrasekaran, N., & Mukherjee, A. (2015). Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environmental Science and Pollution Research, 22(14), 11057-11066.
  • Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221-3227.
  • Liu, R., Zhang, H., & Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients?. Water, Air, & Soil Pollution, 227(1), 42.
  • Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., ... & Sarret, G. (2014). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials, 264, 98-106.
  • Zhu, Z. J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O. R., ... & Vachet, R. W. (2012). Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environmental Science & Technology, 46(22), 12391-12398.
  • Kashyap, P.L., Xiang, X. & Heiden, P., (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, pp.36-51.
  • Pereira, A. E., Grillo, R., Mello, N. F., Rosa, A. H., & Fraceto, L. F. (2014). Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials, 268, 207-215.
  • Oliveira, H. C., Stolf-Moreira, R., Martinez, C. B., Sousa, G. F., Grillo, R., de Jesus, M. B., & Fraceto, L. F. (2015). Evaluation of the side effects of poly (epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Frontiers in chemistry, 3.
  • Oliveira, H. C., Stolf-Moreira, R., Martinez, C. B. R., Grillo, R., de Jesus, M. B., & Fraceto, L. F. (2015). Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PloS One, 10(7), e0132971.
  • Khater, H. F. (2012). Ecosmart biorational insecticides: alternative insect control strategies. In Insecticides-Advances in Integrated Pest Management. InTech.
  • Forim, M. R., Costa, E. S., da Silva, M. F. D. G. F., Fernandes, J. B., Mondego, J. M., & Boiça Junior, A. L. (2013). Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. Journal of Agricultural and Food Chemistry, 61(38), 9131-9139.
  • Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60(39), 9781-9792.
  • Scott, N., & Chen, H. (2013). Nanoscale science and engineering for agriculture and food systems. Industrial Biotechnology, 9(1), 17-18.
  • de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances, 32(8), 1550-1561.
  • Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29(6), 792-803.
  • Duran, N., & Marcato, P. D. (2013). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science & Technology, 48(6), 1127-1134.
  • Tramon, C. (2014). Modeling the controlled release of essential oils from a polymer matrix—a special case. Industrial Crops and Products, 61, 23-30.
  • Kah, M. (2015). Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Frontiers in Chemistry, 3.
  • Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K. K., & Minhas, P. S. (2015). Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Research Letters, 10(1), 371.
  • Frederiksen, H. K., Kristensen, H. G., & Pedersen, M. (2003). Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin—incompatibility of the lipid and the pyrethroid and biological properties of the formulations. Journal of controlled release, 86(2), 243-252.
  • Liu, F., Wen, L. X., Li, Z. Z., Yu, W., Sun, H. Y., & Chen, J. F. (2006). Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Materials Research Bulletin, 41(12), 2268-2275.
  • Wang, L., Li, X., Zhang, G., Dong, J. & Eastoe, J., (2007). Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 314(1), pp.230-235.
  • Bhagat, D., Samanta, S. K., & Bhattacharya, S. (2013). Efficient management of fruit pests by pheromone nanogels. Scientific Reports, 3.
  • Sonkar, S. K., Roy, M., Babar, D. G., & Sarkar, S. (2012). Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale, 4(24), 7670-7675.
  • Yildiz, N., & Pala, A. (2012). Effects of small-diameter silver nanoparticles on microbial load in cow milk. Journal of Dairy Science, 95(3), 1119-1127.
  • Hussain, H. I., Yi, Z., Rookes, J. E., Kong, L. X., & Cahill, D. M. (2013). Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. Journal of Nanoparticle Research, 15(6), 1676.
  • Wen, L. X., Li, Z. Z., Zou, H. K., Liu, A. Q., & Chen, J. F. (2005). Controlled release of avermectin from porous hollow silica nanoparticles. Pest Management Science, 61(6), 583-590.
  • Ogunleye, A., Bhat, A., Irorere, V. U., Hill, D., Williams, C., & Radecka, I. (2015). Poly-(-glutamic acid: Production, properties and applications. Microbiology (Reading, England), 161 (Pt 1), 1–17.
  • Chang, J., Zhong, Z., Hong, X. U., Zhong, Y. A. O., & Rizhi, C. H. E. N. (2013). Fabrication of poly (γ-glutamic acid)-coated Fe3O4 magnetic nanoparticles and their application in heavy metal removal. Chinese Journal of Chemical Engineering, 21(11), 1244-1250.
  • Perlatti, B., de Souza Bergo, P. L., Fernandes, J. B., & Forim, M. R. (2013). Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In Insecticides-Development of Safer and More Effective Technologies. InTech.
  • Varma, M. V., Kaushal, A. M., Garg, A., & Garg, S. (2004). Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. American Journal of Drug Delivery, 2(1), 43-57.
  • Chronopoulou, L., Massimi, M., Giardi, M. F., Cametti, C., Devirgiliis, L. C., Dentini, M., & Palocci, C. (2013). Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids and Surfaces B: Biointerfaces, 103, 310-317.
  • Valletta, A., Chronopoulou, L., Palocci, C., Baldan, B., Donati, L., & Pasqua, G. (2014). Poly (lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. Journal of Nanoparticle Research, 16(12), 2744.
  • Faisant, N., Siepmann, J., & Benoit, J. P. (2002). PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. European Journal of Pharmaceutical Sciences, 15(4), 355-366.
  • Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture: prospects and constraints. Nanotechnology, Science and Applications, 7, 63.
  • Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1014.
  • Prasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology, 13(6), 705-713.
  • Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. The Scientific World Journal, 2014.
  • Pereira, A. E. S., Sandoval-Herrera, I. E., Zavala-Betancourt, S. A., Oliveira, H. C., Ledezma-Pérez, A. S., Romero, J., & Fraceto, L. F. (2017). γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate Polymers, 157, 1862-1873.
  • Quiñones, J. P., García, Y. C., Curiel, H., & Covas, C. P. (2010). Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydrate Polymers, 80(3), 915-921.
  • Tao, S., Pang, R., Chen, C., Ren, X., & Hu, S. (2012). Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydrate Polymers, 88(4), 1189-1194.
  • Oliveira, H. C., Gomes, B. C., Pelegrino, M. T., & Seabra, A. B. (2016). Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide, 61, 10-19.
  • McDaniel, E., Chen, I., Balogh, E., Yang, Y., & Ghoshroy, S. (2013). Structural analysis of plants exposed to titanium dioxide (TiO2) nanoparticles. Microscopy and Microanalysis, 19(S2), 104-105.
  • Liu, Y., Sun, Y., He, S., Zhu, Y., Ao, M., Li, J., & Cao, Y. (2013). Synthesis and characterization of gibberellin–chitosan conjugate for controlled-release applications. International Journal of Biological Macromolecules, 57, 213-217.
  • Hafez, I. H., Berber, M. R., Minagawa, K., Mori, T., & Tanaka, M. (2010). Design of a multifunctional nanohybrid system of the phytohormone gibberellic acid using an inorganic layered double-hydroxide material. Journal of Agricultural and Food Chemistry, 58(18), 10118-10123.
  • Fernández, A., Picouet, P., & Lloret, E. (2010). Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. International Journal of Food Microbiology, 142(1), 222-228.
  • Perreault, F., Popovic, R., & Dewez, D. (2014). Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environmental Pollution, 185, 219-227.
  • Nguyen, H. C., Nguyen, T. T., Dao, T. H., Ngo, Q. B., Pham, H. L., & Nguyen, T. B. N. (2016). Preparation of Ag/SiO2 nanocomposite and assessment of its antifungal effect on soybean plant (a Vietnamese species DT-26). Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(4), 045014.
  • Zhou, L., Zhao, P., Chi, Y., Wang, D., Wang, P., Liu, N. & Zhong, N. (2017). Controlling the Hydrolysis and Loss of Nitrogen Fertilizer (Urea) by using a Nanocomposite Favors Plant Growth. ChemSusChem, 10(9), 2068-2079.
  • Gunaratne, G. P., Kottegoda, N., Madusanka, N., Munaweera, I., Sandaruwan, C., Priyadarshana, W. M. G. I. & Karunaratne, V. (2016). Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: Efficacy and plant uptake. Indian Journal of Agricultural Science, 86(4).
  • Ao, M., Zhu, Y., He, S., Li, D., Li, P., Li, J., & Cao, Y. (2012). Preparation and characterization of 1-naphthylacetic acid–silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology, 24(3), 035601.
  • Ashfaq, M., Verma, N., & Khan, S. (2017). Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environmental Science: Nano, 4(1), 138-148.
There are 98 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Yiğit Küçükçobanoğlu

Lale Yıldız Aktaş

Publication Date December 31, 2018
Acceptance Date December 11, 2018
Published in Issue Year 2018 Volume: 30 Issue: 4

Cite

APA Küçükçobanoğlu, Y., & Yıldız Aktaş, L. (2018). Nanokompozit Kaynağı ve Uygulama Alanı Olarak Bitkiler. Marmara Fen Bilimleri Dergisi, 30(4), 429-436. https://doi.org/10.7240/marufbd.357278
AMA Küçükçobanoğlu Y, Yıldız Aktaş L. Nanokompozit Kaynağı ve Uygulama Alanı Olarak Bitkiler. MFBD. December 2018;30(4):429-436. doi:10.7240/marufbd.357278
Chicago Küçükçobanoğlu, Yiğit, and Lale Yıldız Aktaş. “Nanokompozit Kaynağı Ve Uygulama Alanı Olarak Bitkiler”. Marmara Fen Bilimleri Dergisi 30, no. 4 (December 2018): 429-36. https://doi.org/10.7240/marufbd.357278.
EndNote Küçükçobanoğlu Y, Yıldız Aktaş L (December 1, 2018) Nanokompozit Kaynağı ve Uygulama Alanı Olarak Bitkiler. Marmara Fen Bilimleri Dergisi 30 4 429–436.
IEEE Y. Küçükçobanoğlu and L. Yıldız Aktaş, “Nanokompozit Kaynağı ve Uygulama Alanı Olarak Bitkiler”, MFBD, vol. 30, no. 4, pp. 429–436, 2018, doi: 10.7240/marufbd.357278.
ISNAD Küçükçobanoğlu, Yiğit - Yıldız Aktaş, Lale. “Nanokompozit Kaynağı Ve Uygulama Alanı Olarak Bitkiler”. Marmara Fen Bilimleri Dergisi 30/4 (December 2018), 429-436. https://doi.org/10.7240/marufbd.357278.
JAMA Küçükçobanoğlu Y, Yıldız Aktaş L. Nanokompozit Kaynağı ve Uygulama Alanı Olarak Bitkiler. MFBD. 2018;30:429–436.
MLA Küçükçobanoğlu, Yiğit and Lale Yıldız Aktaş. “Nanokompozit Kaynağı Ve Uygulama Alanı Olarak Bitkiler”. Marmara Fen Bilimleri Dergisi, vol. 30, no. 4, 2018, pp. 429-36, doi:10.7240/marufbd.357278.
Vancouver Küçükçobanoğlu Y, Yıldız Aktaş L. Nanokompozit Kaynağı ve Uygulama Alanı Olarak Bitkiler. MFBD. 2018;30(4):429-36.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr