Research Article
BibTex RIS Cite

AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ

Year 2018, Volume: 30 Issue: 4, 445 - 452, 31.12.2018
https://doi.org/10.7240/marufbd.424411

Abstract

Bu çalışmada,
lokomotiflerde kullanılan
ağır iş dizel motorunun silindiri içerisindeki soğuk hava akışı ve oluşan girdaplar
Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi ile hareketli çözüm ağı
kullanılarak modellenmiştir. Ele alınan motor silindirinde emme ve egzoz
portları, valfleri ve ön yanma odalı tip yanma odası vardır. Krank açısına göre
değişen piston ve emme-egzoz supapları için hareketli çözüm ağı kullanılmıştır,
soğuk hava akışı RNG k-ε türbülans modeli kullanılarak modellenmiş ve emme ve
sıkıştırma işlemlerinde yanma odası içerisindeki hız, türbülans kinetik
enerjisi (TKE) ve girdap oranları incelenmiştir. HAD analizleri mevcut motorun
sıkıştırma işlemi sonunda yeterli TKE’sine sahip olmadığını göstermiştir. Sıkıştırma
işlemi sonunda girdap oranının yeterince artmadığı ve ön yanma odası içerisinde,
ana yanma odasına göre daha yüksek hızlara ulaşıldığı görülmüştür. Bu çalışma
neticesinde TKE ve girdap oranı üzerinden yapılan değerlendirmeler ile motor
performansı açısından mevcut ağır iş dizel motoru yanma odasının
iyileştirilmesi gerekliliği ortaya çıkarılmıştır. 

References

  • ANSYS Inc. (2013). ANSYS Fluent Theory Guide.
  • Basha, S.A., Gopal, K.R. (2008). In-cylinder fluid flow, turbulence and spray models—A review, Renewable and Sustainable Energy Reviews 13, 1620–1627.
  • Belardini, P., Bertolli, C. (1999). Multi - Dimensional Modeling of Combustion and Pollutants Formation of New Technology Light Duty Diesel Engines, Oil & Gas Science and Technology Ð Rev. IFP, Vol. 54, No. 2, pp. 251-257.
  • CD-adapco Inc. (2006). Star-CD Methodology Manual.
  • Dillies, B., Ducamin, A., Lebrere, L., Neveu, F. (1997). Direct Injection Diesel Engine Simulation: A Combined Numerical and Experimental Approach from Aerodynamics to Combustion, SAE Technical Paper, 970880
  • French, G., Scott, W. (1985). Giving the IDI Diesel a Fresh Start, SAE Technical Paper, 850452.
  • Han, Z., Reitz, R.D. (1995). Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models, Combustion Science and Technology, Vol.106, pp267-295.
  • Hasan Köten, et. al, (2012) “Effects of the injection parameters and compression ratio on the emissions of a heavy-duty diesel engine”, International Journal of Vehicle Design, 59(2/3), pp. 147–163.
  • Heywood, J. B. (1988). Internal Combustion Engine Fundamentals.
  • Krishna, M.B., Mallikarjuna, J.M. (2015). Experimental investigations of in-cylinder flows of Engine with Intake Shrouded Valve, International Journal of Engineering Technology, Management and Applied Sciences, 2349-4476.
  • Patterson, M., Kong, S., Hampson, G., Reitz, R. (1994). Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions, SAE Technical Paper, 940523.
  • Payri, F., Benajes, J., Margot X., Gil, A. (2004). CFD modeling of the in-cylinder flow in direct-injection Diesel engines, Computers & Fluids, 995-1021.
  • Pelloni, P., Bianchi, G.M., Corcione, F.E., Mattarelli, E. & Bertoni F.L. (2000). Numerical Study of the Combustion Chamber Shape for Common Rail H.S.D.I. Diesel Engines, SAE Paper, 2000-01-1179.
  • Prasad, B.V.V.S.U., Sharma, C.S., Anand, T.N.C., Ravikrishna, R.V. (2011). High swirl-inducing piston bowls in small diesel engines for emission reduction , Elsevier, 2355-2367.
  • Rabault, J., Vernet, J.A., Lindgren, B. & Alfredsson, P.H. (2016). A study using PIV of the intake flow in a diesel engine cylinder, International Journal of Heat and Fluid Flow, 1-12
  • Raj, A.R.G.S., Mallikarjuna, J.M. & Ganesan, V. (2012). Energy efficient piston configuration for effective air motion – A CFD study, Elsevier, 347-354.
  • Somerville, B. (1993). A study of air motion and combustion in the IDI diesel engine. (Doctoral disertation). University of Bath.
  • Stanglmaier R,. Roberts C. (1999). Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications, SAE Technical Paper, 1999-01-3682.
  • Sun, Y. (2007). Diesel combustion optimization and emissions reduction using adaptive injection strategies (AIS) wıth improved numerical models. (Doctoral disertation). University of Wisconsin, Madison.
  • Torregrosa, A., Olmeda, P., Degraeuwe, B. & Reyes M. (2006). A concise wall temperature model for DI Diesel engines, Applied Thermal Engineering, 1320-1327.
  • Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. & Speziale, C.G. (1992). Development of turbulence models for shear flows by a double expansion technique, Phys.Fluids, A4(7).pp.1510-1520.
  • Wei, S., Wang, F., Leng, X., Liu, X., Ji, K. (2013). Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines, Elsevier, 184-190.
  • Zhu, Y., Zhao, H., Ladommatos, N. (2005). Computational fluid dynamics study of the effects of the re-entrant lip shape and toroidal radii of piston bowl on a high-speed direct-injection diesel engine’s performance and emissions, J. Automobile Engineering, Vol. 219 Part D.
Year 2018, Volume: 30 Issue: 4, 445 - 452, 31.12.2018
https://doi.org/10.7240/marufbd.424411

Abstract

References

  • ANSYS Inc. (2013). ANSYS Fluent Theory Guide.
  • Basha, S.A., Gopal, K.R. (2008). In-cylinder fluid flow, turbulence and spray models—A review, Renewable and Sustainable Energy Reviews 13, 1620–1627.
  • Belardini, P., Bertolli, C. (1999). Multi - Dimensional Modeling of Combustion and Pollutants Formation of New Technology Light Duty Diesel Engines, Oil & Gas Science and Technology Ð Rev. IFP, Vol. 54, No. 2, pp. 251-257.
  • CD-adapco Inc. (2006). Star-CD Methodology Manual.
  • Dillies, B., Ducamin, A., Lebrere, L., Neveu, F. (1997). Direct Injection Diesel Engine Simulation: A Combined Numerical and Experimental Approach from Aerodynamics to Combustion, SAE Technical Paper, 970880
  • French, G., Scott, W. (1985). Giving the IDI Diesel a Fresh Start, SAE Technical Paper, 850452.
  • Han, Z., Reitz, R.D. (1995). Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models, Combustion Science and Technology, Vol.106, pp267-295.
  • Hasan Köten, et. al, (2012) “Effects of the injection parameters and compression ratio on the emissions of a heavy-duty diesel engine”, International Journal of Vehicle Design, 59(2/3), pp. 147–163.
  • Heywood, J. B. (1988). Internal Combustion Engine Fundamentals.
  • Krishna, M.B., Mallikarjuna, J.M. (2015). Experimental investigations of in-cylinder flows of Engine with Intake Shrouded Valve, International Journal of Engineering Technology, Management and Applied Sciences, 2349-4476.
  • Patterson, M., Kong, S., Hampson, G., Reitz, R. (1994). Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions, SAE Technical Paper, 940523.
  • Payri, F., Benajes, J., Margot X., Gil, A. (2004). CFD modeling of the in-cylinder flow in direct-injection Diesel engines, Computers & Fluids, 995-1021.
  • Pelloni, P., Bianchi, G.M., Corcione, F.E., Mattarelli, E. & Bertoni F.L. (2000). Numerical Study of the Combustion Chamber Shape for Common Rail H.S.D.I. Diesel Engines, SAE Paper, 2000-01-1179.
  • Prasad, B.V.V.S.U., Sharma, C.S., Anand, T.N.C., Ravikrishna, R.V. (2011). High swirl-inducing piston bowls in small diesel engines for emission reduction , Elsevier, 2355-2367.
  • Rabault, J., Vernet, J.A., Lindgren, B. & Alfredsson, P.H. (2016). A study using PIV of the intake flow in a diesel engine cylinder, International Journal of Heat and Fluid Flow, 1-12
  • Raj, A.R.G.S., Mallikarjuna, J.M. & Ganesan, V. (2012). Energy efficient piston configuration for effective air motion – A CFD study, Elsevier, 347-354.
  • Somerville, B. (1993). A study of air motion and combustion in the IDI diesel engine. (Doctoral disertation). University of Bath.
  • Stanglmaier R,. Roberts C. (1999). Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications, SAE Technical Paper, 1999-01-3682.
  • Sun, Y. (2007). Diesel combustion optimization and emissions reduction using adaptive injection strategies (AIS) wıth improved numerical models. (Doctoral disertation). University of Wisconsin, Madison.
  • Torregrosa, A., Olmeda, P., Degraeuwe, B. & Reyes M. (2006). A concise wall temperature model for DI Diesel engines, Applied Thermal Engineering, 1320-1327.
  • Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. & Speziale, C.G. (1992). Development of turbulence models for shear flows by a double expansion technique, Phys.Fluids, A4(7).pp.1510-1520.
  • Wei, S., Wang, F., Leng, X., Liu, X., Ji, K. (2013). Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines, Elsevier, 184-190.
  • Zhu, Y., Zhao, H., Ladommatos, N. (2005). Computational fluid dynamics study of the effects of the re-entrant lip shape and toroidal radii of piston bowl on a high-speed direct-injection diesel engine’s performance and emissions, J. Automobile Engineering, Vol. 219 Part D.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Emrah Ayaz This is me 0000-0001-7478-1979

Hasan Köten 0000-0002-1907-9420

Sertaç Çadırcı 0000-0002-2281-721X

Publication Date December 31, 2018
Acceptance Date December 11, 2018
Published in Issue Year 2018 Volume: 30 Issue: 4

Cite

APA Ayaz, E., Köten, H., & Çadırcı, S. (2018). AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ. Marmara Fen Bilimleri Dergisi, 30(4), 445-452. https://doi.org/10.7240/marufbd.424411
AMA Ayaz E, Köten H, Çadırcı S. AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ. MFBD. December 2018;30(4):445-452. doi:10.7240/marufbd.424411
Chicago Ayaz, Emrah, Hasan Köten, and Sertaç Çadırcı. “AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ”. Marmara Fen Bilimleri Dergisi 30, no. 4 (December 2018): 445-52. https://doi.org/10.7240/marufbd.424411.
EndNote Ayaz E, Köten H, Çadırcı S (December 1, 2018) AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ. Marmara Fen Bilimleri Dergisi 30 4 445–452.
IEEE E. Ayaz, H. Köten, and S. Çadırcı, “AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ”, MFBD, vol. 30, no. 4, pp. 445–452, 2018, doi: 10.7240/marufbd.424411.
ISNAD Ayaz, Emrah et al. “AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ”. Marmara Fen Bilimleri Dergisi 30/4 (December 2018), 445-452. https://doi.org/10.7240/marufbd.424411.
JAMA Ayaz E, Köten H, Çadırcı S. AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ. MFBD. 2018;30:445–452.
MLA Ayaz, Emrah et al. “AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ”. Marmara Fen Bilimleri Dergisi, vol. 30, no. 4, 2018, pp. 445-52, doi:10.7240/marufbd.424411.
Vancouver Ayaz E, Köten H, Çadırcı S. AĞIR İŞ DİZEL MOTORU SİLİNDİRİ İÇERİSİNDEKİ SOĞUK HAVA AKIŞININ SAYISAL İNCELENMESİ. MFBD. 2018;30(4):445-52.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr