BibTex RIS Cite

-

Year 2013, Volume: 26 Issue: 1, 1 - 4, 30.09.2015

Abstract

Surgery, radiotherapy and chemotherapy are conventional methods used in cancer treatment. Because these methods have some limitations, it is difficult to cure the disease completely. In recent years, to overcome these limitations and also to increase the efficiency of the therapies, new methods are being developed. In this context, nanotechnology is a promising approach. Therefore, cancer nanotechnology has become an important field. Some applications used in the field of cancer nanotechnology include novel nanodrugs that decrease the adverse effects of conventional cancer drugs and increase their therapeutic efficacy, gold nanoparticles which increase the sensitivity to radiotherapy and nanoparticles used in thermal ablation therapy among many others

References

  • 1. Klug WS, Cummings MR, Spencer CA, Palladino MA. Cancer and regulation of the cell cycle. In: Klug WS, Cummings MR, Spencer CA, Palladino MA, editors. Concept of Genetics. San Francisco: Pearson, 2009; 511-30.
  • 2. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008; 58:97–110. doi:10.3322/CA.2007.0003
  • 3. Ochekpe NA, Olorunfemi PO, Ngwuluka NC. Nanotechnology and drug delivery part 1: background and applications. Trop J Pharm Res 2009; 8: 265-74. doi:10.4314/tjpr.v8i3.44546
  • 4. Jain KK. Advances in the field of nanooncology. BMC Medicine 2010; 8: 83. doi:10.1186/1741-7015-8-83
  • 5. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006; 5: 1909-17. doi:10.1158/1535-7163.MCT-06-0141
  • 6. Kumar MNVR. Nano and microparticles as controlled drug delivery devices. J Pharm Pharmaceut Sci 2000; 3:234-58.
  • 7. Farrell D, Ptak K, Panaro NJ, Grodzinski P. Nanotechnology-based cancer therapeutics-promise and challenge-lessons learned through the NCI alliance for nanotechnology in cancer. Pharm Res 2011; 28: 273- 8. doi:10.1007/s11095-010-0214-7
  • 8. Yallapu MM, Jaggi M, Chauhan SC. Scope of nanotechnology in ovarian cancer therapeutics. J Ovarian Res 2010; 3:1-10. doi:10.1186/1757-2215-3-19
  • 9. Cella D, Peterman A, Hudgens S, Webster K, Socinski MA. Measuring the side effects of taxane therapy in oncology the functional assessment of cancer therapy–taxane (FACT-Taxane). Cancer 2003; 98: 822-31.
  • 10. Rowinsky EK, Donehower RC. Paclitaxel (Taxol). N Engl J Med 1995; 332: 1004-14. 11. Spencer CM, Faulds D. Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 1994; 48: 794–847. doi:10.2165/00003495- 199448050-00009
  • 12. Onetto N, Canetta R, Winograd B, et al. Overview of paclitaxel safety. J Natl Cancer Inst Monogr 1993;15:131–9.
  • 13. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Inter J Nanomed 2009; 4: 99-105.
  • 14. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2: 1-6. doi:10.1186/1745-6673-2- 16
  • 15. Bartels CL, Wilson AF. How does a novel formulation of paclitaxel affect drug delivery in metastatic breast cancer? US Pharm 2004; 29 : 18-23.
  • 16. Garber K. Improved paclitaxel formulation hints at new chemotherapy approach. J. Natl Cancer Inst 2004; 96 : 90-1. doi:10.1093/jnci/96.2.90
  • 17. Moghimi SM. Passive targeting of solid tumors: Pathophysiological principles and physicochemical aspects of delivery systems. In: Amiji MM, editor. Nanotechnology for Cancer Therapy. ABD: CRC Press, 2007: 11-8.
  • 18. Barrón-Vivanco B, Rothenberg S, Medina-Díaz I, et al. AKRs expression in peripheral blood lymphocytes from smokers : The role of body mass index. Hum Exp Toxicol 2012 Ahead of print. doi: 10.1177/0960327112455071
  • 19. Preobrazhenskaya MN, Tevyashova AN, Olsufyeva EN, Huang KF, Huang HS. Second generation drugs-derivatives of natural antitumor anthracycline antibiotics daunorubicin, doxorubicin and carminomycin. J Med Sci 2006; 26: 119-28.
  • 20. Yeh ETH, Tong AT, Lenihan DJ, et al. Cardiovascular complications of cancer therapy diagnosis, pathogenesis, and management. Circulation 2004; 109: 3122-31. doi: 10.1161 /01.CIR.0000133187.74800.B9
  • 21. Doroshow JH. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 1983; 43: 460-72.
  • 22. Rajagopalan S, Politi PM, Sinha BK, Myers CE. Adriamycin-induced free radical formation in the perfused rat heart: Implications for cardiotoxicity. Cancer Res 1988; 48: 4766-9.
  • 23. Jackson JA, Reeves JP, Muntz KH, et al. Evaluation of free radical effects and catecholamine alterations in adriamycin cardiotoxicity. Am J Pathol 1984; 117:140-53.
  • 24. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: The role of lipid peroxidation in cardiac toxicity and tumor response. Science 1977; 197: 165-7. doi:10.1126/science.877547
  • 25. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001; 19: 1444-54.
  • 26. Poletti P, Bettini AC, Caremoli ER, Labianca R, Tondini C. Liposomalencapsulated doxorubicin (Myocet™; D-99) and vinorelbine in previously treated metastatic breast cancer patients: a feasibility study. Tumori 2008; 94: 686-90.
  • 27. Mross K, Niemann B, Massing U, et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother Pharmacol 2004; 54: 514-24. doi:10.1007/s00280-004-0825-y
  • 28. Thackery E, (editor). The Gale Encyclopedia of Cancer. London: Gale Group, Thomson Learning, 2002.
  • 29. Stephens FO, Aigner KR. Targeting cancer. In: Stephens FO, Aigner KR, editors. Basics of Oncology. London-New York: Springer, 2009: 87-120.
  • 30. Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 2010; 21: (085103) 1-7. doi:10.1088/0957-4484/21/8/085103
  • 31. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004; 4 :437–47. doi:10.1038/nrc1367
  • 32. Minchinton AI, Rojas A, Smith KA, et al. Glutathione depletion in tissues after administration of buthionine sulphoximine. Int J Radiat Oncol 1984; 10: 1261–4. doi:10.1016/0360-3016(84)90329-8
  • 33. Eberhardt W, Pottgen C, Stuschke M. Chemoradiation paradigm for the treatment of lung cancer. Nat Clin Pract Oncol 2006; 3: 188–99. doi:10.1038/ncponc0461
  • 34. Hao D, Ritter MA, Oliver T, Browman GP. Platinum-based concurrent chemoradiotherapy for tumors of the head and neck and the esophagus. Semin Radiat Oncol 2006; 16: 10–9. doi: 10.1016/j. semradonc.2005.08.002
  • 35. Wang L, Yang W, Read P, Larner J, Sheng K. Tumor cell apoptosis induced by nanoparticle conjugate in combination with radiation therapy. Nanotechnology 2010; 21: (475103) 1-7. doi:10.1088/0957- 4484/21/47/475103
  • 36. Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HH, Wu CL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 2008; 99: 1479–84. doi:10.1111/ j.1349-7006.2008.00827.x
  • 37. Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 2010; 15: 842- 50. doi:10.1016/j.drudis.2010.08.006
  • 38. Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 2012; 4 : 4830-8.
  • 39. Chithrani DB, Jelveh S, Jalali F, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 2010; 173: 719-28. doi:10.1667/RR1984.1
  • 40. Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol 2011; 79: 531-9. doi:10.1016/j.ijrobp.2010.08.044
  • 41. Geng F, Song K, Xing JZ, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011; 22: (285101) 1-8. doi:10.1088/0957-4484/22/28/285101
  • 42. Zheng Y, Hunting DJ, Ayotte P, Sanche L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res 2008; 169: 19-27. doi:10.1667/RR1080.1
  • 43. Baronzio GF, Hager ED. Preface. In: Baronzio GF, Hager ED, editors. Hyperthermia in Cancer Treatment: A primer. USA: Springer Science, 2006: 135.
  • 44. Prickett WM, Rite BDV, Resasco DE, Harrison RG. Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer. Nanotechnology 2011; 22: 1-7. doi:10.1088/0957-4484/22/45/455101

Klinik onkoloji alanında nanoteknoloji

Year 2013, Volume: 26 Issue: 1, 1 - 4, 30.09.2015

Abstract

Cerrahi, radyoterapi ve kemoterapi kanser tedavisinde kullanılan
geleneksel yöntemlerdir. Bu yöntemlerin bazı sınırlamaları olduğu
için hastalığı tamamen tedavi etmek güçtür. Son yıllarda bu
sınırlamaların üstesinden gelmek ve aynı zamanda tedavi etkinliğini
arttırmak için yeni yöntemler geliştirilmektedir. Bu bağlamda
nanoteknoloji umut verici bir yaklaşımdır. Bu nedenle kanser
nanoteknolojisi dikkat çekici bir alan haline gelmiştir. Geleneksel
kanser ilaçlarının yan etkilerini azaltan ve tedavi etkinliğini arttıran
yeni nano ilaçlar, radyoterapiye duyarlılığı arttıran altın nano
partiküller ve termal ablasyon tedavisinde kullanılan nano partiküller
kanser nanoteknolojisi alanında kullanılan uygulamalardan sadece
bazılarıdır.

References

  • 1. Klug WS, Cummings MR, Spencer CA, Palladino MA. Cancer and regulation of the cell cycle. In: Klug WS, Cummings MR, Spencer CA, Palladino MA, editors. Concept of Genetics. San Francisco: Pearson, 2009; 511-30.
  • 2. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008; 58:97–110. doi:10.3322/CA.2007.0003
  • 3. Ochekpe NA, Olorunfemi PO, Ngwuluka NC. Nanotechnology and drug delivery part 1: background and applications. Trop J Pharm Res 2009; 8: 265-74. doi:10.4314/tjpr.v8i3.44546
  • 4. Jain KK. Advances in the field of nanooncology. BMC Medicine 2010; 8: 83. doi:10.1186/1741-7015-8-83
  • 5. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006; 5: 1909-17. doi:10.1158/1535-7163.MCT-06-0141
  • 6. Kumar MNVR. Nano and microparticles as controlled drug delivery devices. J Pharm Pharmaceut Sci 2000; 3:234-58.
  • 7. Farrell D, Ptak K, Panaro NJ, Grodzinski P. Nanotechnology-based cancer therapeutics-promise and challenge-lessons learned through the NCI alliance for nanotechnology in cancer. Pharm Res 2011; 28: 273- 8. doi:10.1007/s11095-010-0214-7
  • 8. Yallapu MM, Jaggi M, Chauhan SC. Scope of nanotechnology in ovarian cancer therapeutics. J Ovarian Res 2010; 3:1-10. doi:10.1186/1757-2215-3-19
  • 9. Cella D, Peterman A, Hudgens S, Webster K, Socinski MA. Measuring the side effects of taxane therapy in oncology the functional assessment of cancer therapy–taxane (FACT-Taxane). Cancer 2003; 98: 822-31.
  • 10. Rowinsky EK, Donehower RC. Paclitaxel (Taxol). N Engl J Med 1995; 332: 1004-14. 11. Spencer CM, Faulds D. Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 1994; 48: 794–847. doi:10.2165/00003495- 199448050-00009
  • 12. Onetto N, Canetta R, Winograd B, et al. Overview of paclitaxel safety. J Natl Cancer Inst Monogr 1993;15:131–9.
  • 13. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Inter J Nanomed 2009; 4: 99-105.
  • 14. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2: 1-6. doi:10.1186/1745-6673-2- 16
  • 15. Bartels CL, Wilson AF. How does a novel formulation of paclitaxel affect drug delivery in metastatic breast cancer? US Pharm 2004; 29 : 18-23.
  • 16. Garber K. Improved paclitaxel formulation hints at new chemotherapy approach. J. Natl Cancer Inst 2004; 96 : 90-1. doi:10.1093/jnci/96.2.90
  • 17. Moghimi SM. Passive targeting of solid tumors: Pathophysiological principles and physicochemical aspects of delivery systems. In: Amiji MM, editor. Nanotechnology for Cancer Therapy. ABD: CRC Press, 2007: 11-8.
  • 18. Barrón-Vivanco B, Rothenberg S, Medina-Díaz I, et al. AKRs expression in peripheral blood lymphocytes from smokers : The role of body mass index. Hum Exp Toxicol 2012 Ahead of print. doi: 10.1177/0960327112455071
  • 19. Preobrazhenskaya MN, Tevyashova AN, Olsufyeva EN, Huang KF, Huang HS. Second generation drugs-derivatives of natural antitumor anthracycline antibiotics daunorubicin, doxorubicin and carminomycin. J Med Sci 2006; 26: 119-28.
  • 20. Yeh ETH, Tong AT, Lenihan DJ, et al. Cardiovascular complications of cancer therapy diagnosis, pathogenesis, and management. Circulation 2004; 109: 3122-31. doi: 10.1161 /01.CIR.0000133187.74800.B9
  • 21. Doroshow JH. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 1983; 43: 460-72.
  • 22. Rajagopalan S, Politi PM, Sinha BK, Myers CE. Adriamycin-induced free radical formation in the perfused rat heart: Implications for cardiotoxicity. Cancer Res 1988; 48: 4766-9.
  • 23. Jackson JA, Reeves JP, Muntz KH, et al. Evaluation of free radical effects and catecholamine alterations in adriamycin cardiotoxicity. Am J Pathol 1984; 117:140-53.
  • 24. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: The role of lipid peroxidation in cardiac toxicity and tumor response. Science 1977; 197: 165-7. doi:10.1126/science.877547
  • 25. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001; 19: 1444-54.
  • 26. Poletti P, Bettini AC, Caremoli ER, Labianca R, Tondini C. Liposomalencapsulated doxorubicin (Myocet™; D-99) and vinorelbine in previously treated metastatic breast cancer patients: a feasibility study. Tumori 2008; 94: 686-90.
  • 27. Mross K, Niemann B, Massing U, et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother Pharmacol 2004; 54: 514-24. doi:10.1007/s00280-004-0825-y
  • 28. Thackery E, (editor). The Gale Encyclopedia of Cancer. London: Gale Group, Thomson Learning, 2002.
  • 29. Stephens FO, Aigner KR. Targeting cancer. In: Stephens FO, Aigner KR, editors. Basics of Oncology. London-New York: Springer, 2009: 87-120.
  • 30. Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 2010; 21: (085103) 1-7. doi:10.1088/0957-4484/21/8/085103
  • 31. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004; 4 :437–47. doi:10.1038/nrc1367
  • 32. Minchinton AI, Rojas A, Smith KA, et al. Glutathione depletion in tissues after administration of buthionine sulphoximine. Int J Radiat Oncol 1984; 10: 1261–4. doi:10.1016/0360-3016(84)90329-8
  • 33. Eberhardt W, Pottgen C, Stuschke M. Chemoradiation paradigm for the treatment of lung cancer. Nat Clin Pract Oncol 2006; 3: 188–99. doi:10.1038/ncponc0461
  • 34. Hao D, Ritter MA, Oliver T, Browman GP. Platinum-based concurrent chemoradiotherapy for tumors of the head and neck and the esophagus. Semin Radiat Oncol 2006; 16: 10–9. doi: 10.1016/j. semradonc.2005.08.002
  • 35. Wang L, Yang W, Read P, Larner J, Sheng K. Tumor cell apoptosis induced by nanoparticle conjugate in combination with radiation therapy. Nanotechnology 2010; 21: (475103) 1-7. doi:10.1088/0957- 4484/21/47/475103
  • 36. Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HH, Wu CL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 2008; 99: 1479–84. doi:10.1111/ j.1349-7006.2008.00827.x
  • 37. Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 2010; 15: 842- 50. doi:10.1016/j.drudis.2010.08.006
  • 38. Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 2012; 4 : 4830-8.
  • 39. Chithrani DB, Jelveh S, Jalali F, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 2010; 173: 719-28. doi:10.1667/RR1984.1
  • 40. Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol 2011; 79: 531-9. doi:10.1016/j.ijrobp.2010.08.044
  • 41. Geng F, Song K, Xing JZ, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011; 22: (285101) 1-8. doi:10.1088/0957-4484/22/28/285101
  • 42. Zheng Y, Hunting DJ, Ayotte P, Sanche L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res 2008; 169: 19-27. doi:10.1667/RR1080.1
  • 43. Baronzio GF, Hager ED. Preface. In: Baronzio GF, Hager ED, editors. Hyperthermia in Cancer Treatment: A primer. USA: Springer Science, 2006: 135.
  • 44. Prickett WM, Rite BDV, Resasco DE, Harrison RG. Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer. Nanotechnology 2011; 22: 1-7. doi:10.1088/0957-4484/22/45/455101
There are 43 citations in total.

Details

Primary Language Turkish
Journal Section Review Makaleler
Authors

Mehmet Topçul

İdil Çetin This is me

Publication Date September 30, 2015
Published in Issue Year 2013 Volume: 26 Issue: 1

Cite

APA Topçul, M., & Çetin, İ. (2015). Klinik onkoloji alanında nanoteknoloji. Marmara Medical Journal, 26(1), 1-4.
AMA Topçul M, Çetin İ. Klinik onkoloji alanında nanoteknoloji. Marmara Med J. October 2015;26(1):1-4.
Chicago Topçul, Mehmet, and İdil Çetin. “Klinik Onkoloji alanında Nanoteknoloji”. Marmara Medical Journal 26, no. 1 (October 2015): 1-4.
EndNote Topçul M, Çetin İ (October 1, 2015) Klinik onkoloji alanında nanoteknoloji. Marmara Medical Journal 26 1 1–4.
IEEE M. Topçul and İ. Çetin, “Klinik onkoloji alanında nanoteknoloji”, Marmara Med J, vol. 26, no. 1, pp. 1–4, 2015.
ISNAD Topçul, Mehmet - Çetin, İdil. “Klinik Onkoloji alanında Nanoteknoloji”. Marmara Medical Journal 26/1 (October 2015), 1-4.
JAMA Topçul M, Çetin İ. Klinik onkoloji alanında nanoteknoloji. Marmara Med J. 2015;26:1–4.
MLA Topçul, Mehmet and İdil Çetin. “Klinik Onkoloji alanında Nanoteknoloji”. Marmara Medical Journal, vol. 26, no. 1, 2015, pp. 1-4.
Vancouver Topçul M, Çetin İ. Klinik onkoloji alanında nanoteknoloji. Marmara Med J. 2015;26(1):1-4.