Research Article
BibTex RIS Cite
Year 2024, Volume: 37 Issue: 1, 72 - 79, 28.01.2024
https://doi.org/10.5472/marumj.1381649

Abstract

References

  • Trojanowska, M. Pulmonary hypertension associated with scleroderma and connective tissue disease: Potential molecular and cellular targets. Adv Pulm Hypertens 2017; 16:61-7. doi:10.21693/1933-088X-16.2.61
  • Varga J, Trojanowska M, Kuwana M. Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. J Scleroderma Relat Disord 2017;2: 137-52. doi:10.5301/jsrd.5000249
  • Herzog EL, Mathur A, Tager AM, et al. Review: interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: how similar and distinct? Arthrit Rheumatol 2014; 66:1967-78. doi:10.1002/mad.38702
  • Van den Hooge F, Khanna D, Fransen J, et al. Classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum Dis 2013; 72:1747- 55. doi:10.1002/art.38098
  • Hunzelmann N, Genth E, Krieg T, et al. The registry of the German Network for Systemic Scleroderma: frequency of disease subsets and patterns of organ involvement. Rheumatology (Oxford) 2008; 47:1185-92. doi:10.1093/ rheumatology/ken179
  • Mayes MD, Lacey JV Jr, Beebe-Dimmer J, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 2003; 48:2246-55. doi:10.1002/art.11073
  • Allanore Y, Dieude P, Boileau C. Genetic background of systemic sclerosis: autoimmune genes take centre stage. Rheumatology (Oxford) 2010; 49:203-10. doi: 10.1093/ rheumatology/kep368
  • Feghali-Bostwick C, Medsger TA Jr, Wright TM. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 2003; 48:1956-63. doi: 10.1002/ art.11173
  • Raja J, Denton CP. Cytokines in the immunopathology of systemic sclerosis. Semin Immunopathol 2015; 37:543-57. doi: 10.1007/s00281.015.0511-7
  • Dees C, Tomcik M, Palumbo-Zerr K, et al. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor beta in systemic sclerosis. Arthritis Rheum 2012; 64:3006-15. doi: 10.1002/art.34500
  • Varga J. Systemic sclerosis: an update. Bull Hosp Jt Dis 2008; 66:198-202.
  • Yamamoto T. Animal model of sclerotic skin induced by bleomycin: a clue to the pathogenesis of and therapy for scleroderma? Clin Immunol 2002;102: 209-16. doi: 10.1006/ clim.2001.5169
  • Yamamoto T, Kuroda M, Nishioka K. Animal model of sclerotic skin. III: Histopathological comparison of bleomycin-induced scleroderma in various mice strains. Arch Dermatol Res 2000; 292: 535-41. doi: 10.1007/s004.030.000183
  • Yamamoto T, Nishioka K. Animal model of sclerotic skin. V: Increased expression of alpha-smooth muscle actin in fibroblastic cells in bleomycin-induced scleroderma. Clin Immunol 2002; 102: 77-83. doi: 10.1006/clim.2001.5138
  • Kocak A, Harmancı D, Birlik M, et al. Effects of Epigallocatechin-3 – gallate (EGCG) on a Scleroderma Model of Fibrosis. Turk Biyokim Derg 2018; 43: 464-73. doi: 10.1515/ tjb-2017-0185
  • Koçak A, Harmancı D, Çavdar Z, et al. Antioxidant effect of epigallocatechin-3-gallate in a bleomycin-induced scleroderma model. Arch Rheumatol 2019; 34: 1-8. doi: 10.5606/ArchRheumatol2019.6835
  • Hunzelmann N. Current treatment of systemic scleroderma. Hautarzt 2018; 69:901-7. doi:10.1007/s12326.019.0326-8
  • Barsotti S, Orlandi M, Codullo V, et al. One year in review 2019: systemic sclerosis. Clin Exp Rheumatol 2019; 119:3-14.
  • Rawlings SJ. The JAK/STAT signaling pathway. J Cell Sci 2004; 117: 1281-3. doi: 10.1242/jcs.00963
  • Mok CC. The Jak inhibitors in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs 2019; 28: 85-92. doi:10.1080/13543.784.2019.1551358
  • You H, Xu D, Zhao J, et al. JAK Inhibitors: Prospects in Connective Tissue Diseases. Clin Rev Allergy Immunol 2020; 59: 334-51. doi: 10.1007/s12016.020.08786-6
  • Gadina M, Johnson C, Schwartz D, et al. Translational and clinical advances in JAK-STAT biology: the present and future of jakinibs. J Leukoc Biol 2018; 104: 499-514.doi: 10.1002/ JLB.5RI0218-084R
  • Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: what can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis. Ann Rheum Dis 2017; 77: 175-87. doi: 10.1136/ annrheumdis-2017-211555
  • Duggan S, Keam SJ. Upadacitinib: first approval. Drugs 2019; 79:1819-28. doi: 10.1007/s40265.019.01211-z
  • Chrabaszcz M, Małyszko J, Sikora M, et al. Renal involvement in systemic sclerosis: An update Kidney Blood Press Res 2020; 45: 532-48. doi: 10.1159/000507886
  • Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012; 17: 311-21. doi: 10.1111/j.1440- 1797.2012.01572.x
  • Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 2009; 75: 1145-52. doi: 10.1038/ ki.2009.86
  • Dendooven A, Ishola DA, Nguyen TQ, et al. Oxidative stress in obstructive nephropathy. Int J Exp Pathol 2011; 92: 202-10. doi: 10.1111/j.1365-2613.2010.00730.x
  • Zecher M, Guichard C, Velásquez MJ, Figueroa G, Rodrigo R. Implications of oxidative stress in the pathophysiology of obstructive uropathy. Urol Res 2009; 37: 19-26. doi: 10.1007/ s00240.008.0163-3
  • Di Battista M, Barsotti S, Orlandi M, et al. One year in review 2021: systemic sclerosis. Clin Exp Rheumatol 2021; 39: 3-12. doi: 10.55563/clinexprheumatol/izadb8
  • Ziemek J, Man A, Hinchcliff M, Varga J, Simms RW, Lafyatis R. The relationship between skin symptoms and the scleroderma modification of the health assessment questionnaire, the modified Rodnan skin score, and skin pathology in patients with systemic sclerosis. Rheumatology (Oxford) 2016; 55: 911-7. doi: 10.1093/rheumatology/kew003
  • Elhai M, Meune C, Boubaya M, et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis 2017; 76:1897-905. doi: 10.1136/annrheumdis-2017-211448
  • Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2012; 8: 42-54. doi:10.1038/ nrrheum.2011.149
  • Johnson ME, Mahoney JM, Taroni J, et al. Experimentallyderived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts. PLoS One 2015; 10: 1. doi: 10.1371/journal.pone.0114017
  • Servettaz A, Goulvestre C, Kavian N, et al. Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the Mouse. J Immunol 2009; 182: 5855-64. doi: 10.4049/ jimmunol.0803705
  • Grygiel-Gorniak B, Puszczewicz M. Oxidative damage and antioxidative therapy in systemic sclerosis. Mediators Inflamm 2014; 389582. doi: 10.1155/2014/389582
  • Sambo P, Baroni SS, Luchetti M. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum 2001; 44: 2653-64. doi: 10.1002/1529- 0131(200111)44:11<2653: AID-ART445>3.0.CO;2-1
  • Gabrielli A, Svegliati S, Moroncini G, Amico D. New insights into the role of oxidative stress in scleroderma fibrosis. Open Rheumatol J 2012; 6:87-95. doi: 10.2174/187.431.2901206010087
  • Svegliati S, Spadoni T, Moroncini G, Gabrielli A. NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radic Biol Med 2018; 125:90-7. doi: 10.1016/j. freeradbiomed.2018.04.554
  • Bourji K, Meyer A, Chatelus E, et al. High reactive oxygen species in fibrotic and nonfibrotic skin of patients with diffuse cutaneous systemic sclerosis. Free Radic Biol Med 2015; 87:282-9. doi: 10.1016/j.freeradbiomed.2015.07.002
  • Kizilay Mancini O, Acevedo M, Fazez N, et al. Oxidative stress-induced senescence mediates inflammatory and fibrotic phenotypes in fibroblasts from systemic sclerosis patients. Rheumatology (Oxford) 2022; 61:1265-75. doi: 10.1093/ rheumatology/keab477.
  • Ogawa F, Shimizu K, Muroi E, Hara T, Sato S. Increasing levels of serum antioxidant status, total antioxidant power, in systemic sclerosis. Clin Rheumatol 2011; 30: 921-5. doi: 10.1007/s10067.011.1695-4
  • Kavian N, Marut W, Servettaz A, et al. Reactive oxygen speciesmediated killing of activated fibroblasts by arsenic trioxide ameliorates fibrosis in a murine model of systemic sclerosis. Arthritis Rheum 2012; 64:3430-40. doi: 10.1002/art.34534
  • Marut W, Jamier V, Kavian N, et al. The natural organosulfur compound dipropyltetrasulfide prevents HOCl-induced systemic sclerosis in the mouse. Arthritis Res Ther 2013; 15: R167. doi: 10.1186/ar4351
  • van Bon L, Cossu M, Scharstuhl A, et al. Low heme oxygenase-1 levels in patients with systemic sclerosis are associated with an altered Toll-like receptor response: another role for CXCL4? Rheumatology (Oxford) 2016; 55:2066-73. doi: 10.1093/ rheumatology/kew251
  • Sun Q, Hu J, Yu P, et al. Peptide PD29 treats bleomycininduced pulmonary fibrosis by inhibiting the TGF-β/smad signaling pathway. Exp Lung Res 2019; 45:123-34. doi: 10.1080/01902.148.2019.1614696
  • Jones B. 2018. “FDA Reports for rheumatoid arthritis: Upadacitinib non-clinical review(s)”. FDA Reports, 2018.
  • Sun Q, Hu J, Yu P, et al. Peptide PD29 treats bleomycininduced pulmonary fibrosis by inhibiting the TGF-β/smad signaling pathway. Exp Lung Res 2019; 45: 123-34. doi: 10.1080/01902.148.2019.1614696.
  • Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37: 277-85. doi: 10.1016/j.clinbiochem.2003.11.015
  • Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38: 1103-11. DOI: 10.1016/j.clinbiochem.2005.08.008.
  • Aebi H. Catalase in vitro. Methods Enzymol 1984; 105:121-6.
  • Beutler E. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61: 882-8
  • Li M, Zhang X, Wang B, et al. Effect of JAK2/STAT3 signaling pathway on liver injury associated with severe acute pancreatitis in rats. Exp Ther Med 2018; 16: 2013-21. doi: 10.3892/etm.2018.6433
  • Murrell DF. A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol 1993; 28: 78-85. doi: 10.1016/0190-9622(93)70014-k
  • Luo JY, Liu X, Jiang M, Zhao HP, Zhao JJ. Oxidative stress markers in blood in systemic sclerosis: A metaanalysis. Mod Rheumatol 2017; 27: 306-14. doi: 10.1080/14397.595.2016.1206510
  • Tikly M, Channa K, Theodorou P, Gulumian M. Lipid peroxidation and trace elements in systemic sclerosis. Clin Rheumatol 2006; 25: 320-4. doi: 10.1007/s10067.005.0013-4
  • Riccieri V, Spadaro A, Fuksa L, et al. Specific oxidative stress parameters differently correlate with nailfold capillaroscopy changes and organ involvement in systemic sclerosis. Clin Rheumatol 2008; 27: 225-30. doi: 10.1007/s10067.007.0769-9
  • Ogawa F, Shimizu K, Muroi E, et al. Serum levels of 8-isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis. Rheumatology (Oxford) 2006; 45: 815-8. doi: 10.1093/rheumatology/kel012
  • Servettaz A, Guilpain P, Goulvestre C, et al. Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis 2007; 66: 1202-9. doi: 10.1136/ard.2006.067504
  • Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 2010; 48: 1-15. doi: 10.1016/j.freeradbiomed.2009.09.026
  • Albright CD, Salganik RI, Craciunescu CN, Mar MH, Zeisel SH. Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta1 in immortalized rat hepatocytes. J Cell Biochem 2003; 89: 254-61. doi: 10.1002/jcb.10498
  • Herrera B, Murillo MM, Alvarez-Barrientos A, et al. Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes. Free Radic Biol Med 2004; 36: 16-26. doi: 10.1016/j. freeradbiomed.2003.09.020
  • Ishikawa F, Kaneko E, Sugimoto T, et al. A mitochondrial thioredoxin-sensitive mechanism regulates TGF-β-mediated gene expression associated with epithelial-mesenchymal transition. Biochem Biophys Res Commun 2014; 443: 821-7. doi: 10.1016/j.bbrc.2013.12.050
  • Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012; 4: 1399-440. doi: 10.3390/nu4101399
  • Dooley A, Low SY, Holmes A, et al. Nitric oxide synthase expression and activity in the tight-skin mouse model of fibrosis. Rheumatology (Oxford) 2008; 47: 272-80. doi: 10.1093/rheumatology/kem303
  • Seiberlich B, Hunzelmann N, Krieg T, Weber M, Schulze- Lohoff E. Intermediate molecular weight proteinuria and albuminuria identify scleroderma patients with increased morbidity. Clin Nephrol 2008; 70: 110–7. doi: 10.5414/ cnp7011.

Effects of upadacitinib and PD29 on oxidative damage and inflammation in bleomycin-induced scleroderma model kidney tissues

Year 2024, Volume: 37 Issue: 1, 72 - 79, 28.01.2024
https://doi.org/10.5472/marumj.1381649

Abstract

Objective: Scleroderma (SSc) is a rare autoimmune tissue disease. There is currently no effective treatment for SSc. The aim of this
study was to investigate the antioxidant and anti-inflammatory effects of upadacitinib and PD29 on total oxidant status (TOS), total
antioxidant status (TAS), malondialdehyde (MDA), catalase (CAT), glutathione (GSH) peroxidase levels, and interleukin-6 (IL-6) and
interleukin-13 ( IL-13) in kidney tissues of an experimental SSc model.
Materials and Methods: The experimental design was established with five groups of eight mice: Control, bleomycin (BLM) (5 μg/kg),
BLM + upadacitinib (3mg/kg), BLM + PD29 (5 mg/kg) and BLM + PD29 + upadacitinib group. BLM was administered subcutaneously
once a day for 21 days. PD29 was administered subcutaneously and upadacitinib (gavage) were injected for 21 days. Renal tissues were
collected at the end of the experiment. Renal TOS, TAS, MDA, CAT, GSH levels, and IL-6 and IL-13 gene expressions were evaluated.
Results: Upadacitinib and PD29 affected oxidant status and TOS. MDA levels decreased, and GSH, CAT, and TAS levels increased.
Also, upadacitinib and PD29 decreased inflammation via IL-6 and IL-13 cytokines.
Conclusion: Upadacitinib and PD29 may have therapeutic roles for SSc renal crisis.

References

  • Trojanowska, M. Pulmonary hypertension associated with scleroderma and connective tissue disease: Potential molecular and cellular targets. Adv Pulm Hypertens 2017; 16:61-7. doi:10.21693/1933-088X-16.2.61
  • Varga J, Trojanowska M, Kuwana M. Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. J Scleroderma Relat Disord 2017;2: 137-52. doi:10.5301/jsrd.5000249
  • Herzog EL, Mathur A, Tager AM, et al. Review: interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: how similar and distinct? Arthrit Rheumatol 2014; 66:1967-78. doi:10.1002/mad.38702
  • Van den Hooge F, Khanna D, Fransen J, et al. Classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum Dis 2013; 72:1747- 55. doi:10.1002/art.38098
  • Hunzelmann N, Genth E, Krieg T, et al. The registry of the German Network for Systemic Scleroderma: frequency of disease subsets and patterns of organ involvement. Rheumatology (Oxford) 2008; 47:1185-92. doi:10.1093/ rheumatology/ken179
  • Mayes MD, Lacey JV Jr, Beebe-Dimmer J, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 2003; 48:2246-55. doi:10.1002/art.11073
  • Allanore Y, Dieude P, Boileau C. Genetic background of systemic sclerosis: autoimmune genes take centre stage. Rheumatology (Oxford) 2010; 49:203-10. doi: 10.1093/ rheumatology/kep368
  • Feghali-Bostwick C, Medsger TA Jr, Wright TM. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 2003; 48:1956-63. doi: 10.1002/ art.11173
  • Raja J, Denton CP. Cytokines in the immunopathology of systemic sclerosis. Semin Immunopathol 2015; 37:543-57. doi: 10.1007/s00281.015.0511-7
  • Dees C, Tomcik M, Palumbo-Zerr K, et al. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor beta in systemic sclerosis. Arthritis Rheum 2012; 64:3006-15. doi: 10.1002/art.34500
  • Varga J. Systemic sclerosis: an update. Bull Hosp Jt Dis 2008; 66:198-202.
  • Yamamoto T. Animal model of sclerotic skin induced by bleomycin: a clue to the pathogenesis of and therapy for scleroderma? Clin Immunol 2002;102: 209-16. doi: 10.1006/ clim.2001.5169
  • Yamamoto T, Kuroda M, Nishioka K. Animal model of sclerotic skin. III: Histopathological comparison of bleomycin-induced scleroderma in various mice strains. Arch Dermatol Res 2000; 292: 535-41. doi: 10.1007/s004.030.000183
  • Yamamoto T, Nishioka K. Animal model of sclerotic skin. V: Increased expression of alpha-smooth muscle actin in fibroblastic cells in bleomycin-induced scleroderma. Clin Immunol 2002; 102: 77-83. doi: 10.1006/clim.2001.5138
  • Kocak A, Harmancı D, Birlik M, et al. Effects of Epigallocatechin-3 – gallate (EGCG) on a Scleroderma Model of Fibrosis. Turk Biyokim Derg 2018; 43: 464-73. doi: 10.1515/ tjb-2017-0185
  • Koçak A, Harmancı D, Çavdar Z, et al. Antioxidant effect of epigallocatechin-3-gallate in a bleomycin-induced scleroderma model. Arch Rheumatol 2019; 34: 1-8. doi: 10.5606/ArchRheumatol2019.6835
  • Hunzelmann N. Current treatment of systemic scleroderma. Hautarzt 2018; 69:901-7. doi:10.1007/s12326.019.0326-8
  • Barsotti S, Orlandi M, Codullo V, et al. One year in review 2019: systemic sclerosis. Clin Exp Rheumatol 2019; 119:3-14.
  • Rawlings SJ. The JAK/STAT signaling pathway. J Cell Sci 2004; 117: 1281-3. doi: 10.1242/jcs.00963
  • Mok CC. The Jak inhibitors in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs 2019; 28: 85-92. doi:10.1080/13543.784.2019.1551358
  • You H, Xu D, Zhao J, et al. JAK Inhibitors: Prospects in Connective Tissue Diseases. Clin Rev Allergy Immunol 2020; 59: 334-51. doi: 10.1007/s12016.020.08786-6
  • Gadina M, Johnson C, Schwartz D, et al. Translational and clinical advances in JAK-STAT biology: the present and future of jakinibs. J Leukoc Biol 2018; 104: 499-514.doi: 10.1002/ JLB.5RI0218-084R
  • Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: what can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis. Ann Rheum Dis 2017; 77: 175-87. doi: 10.1136/ annrheumdis-2017-211555
  • Duggan S, Keam SJ. Upadacitinib: first approval. Drugs 2019; 79:1819-28. doi: 10.1007/s40265.019.01211-z
  • Chrabaszcz M, Małyszko J, Sikora M, et al. Renal involvement in systemic sclerosis: An update Kidney Blood Press Res 2020; 45: 532-48. doi: 10.1159/000507886
  • Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012; 17: 311-21. doi: 10.1111/j.1440- 1797.2012.01572.x
  • Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 2009; 75: 1145-52. doi: 10.1038/ ki.2009.86
  • Dendooven A, Ishola DA, Nguyen TQ, et al. Oxidative stress in obstructive nephropathy. Int J Exp Pathol 2011; 92: 202-10. doi: 10.1111/j.1365-2613.2010.00730.x
  • Zecher M, Guichard C, Velásquez MJ, Figueroa G, Rodrigo R. Implications of oxidative stress in the pathophysiology of obstructive uropathy. Urol Res 2009; 37: 19-26. doi: 10.1007/ s00240.008.0163-3
  • Di Battista M, Barsotti S, Orlandi M, et al. One year in review 2021: systemic sclerosis. Clin Exp Rheumatol 2021; 39: 3-12. doi: 10.55563/clinexprheumatol/izadb8
  • Ziemek J, Man A, Hinchcliff M, Varga J, Simms RW, Lafyatis R. The relationship between skin symptoms and the scleroderma modification of the health assessment questionnaire, the modified Rodnan skin score, and skin pathology in patients with systemic sclerosis. Rheumatology (Oxford) 2016; 55: 911-7. doi: 10.1093/rheumatology/kew003
  • Elhai M, Meune C, Boubaya M, et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis 2017; 76:1897-905. doi: 10.1136/annrheumdis-2017-211448
  • Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2012; 8: 42-54. doi:10.1038/ nrrheum.2011.149
  • Johnson ME, Mahoney JM, Taroni J, et al. Experimentallyderived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts. PLoS One 2015; 10: 1. doi: 10.1371/journal.pone.0114017
  • Servettaz A, Goulvestre C, Kavian N, et al. Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the Mouse. J Immunol 2009; 182: 5855-64. doi: 10.4049/ jimmunol.0803705
  • Grygiel-Gorniak B, Puszczewicz M. Oxidative damage and antioxidative therapy in systemic sclerosis. Mediators Inflamm 2014; 389582. doi: 10.1155/2014/389582
  • Sambo P, Baroni SS, Luchetti M. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum 2001; 44: 2653-64. doi: 10.1002/1529- 0131(200111)44:11<2653: AID-ART445>3.0.CO;2-1
  • Gabrielli A, Svegliati S, Moroncini G, Amico D. New insights into the role of oxidative stress in scleroderma fibrosis. Open Rheumatol J 2012; 6:87-95. doi: 10.2174/187.431.2901206010087
  • Svegliati S, Spadoni T, Moroncini G, Gabrielli A. NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radic Biol Med 2018; 125:90-7. doi: 10.1016/j. freeradbiomed.2018.04.554
  • Bourji K, Meyer A, Chatelus E, et al. High reactive oxygen species in fibrotic and nonfibrotic skin of patients with diffuse cutaneous systemic sclerosis. Free Radic Biol Med 2015; 87:282-9. doi: 10.1016/j.freeradbiomed.2015.07.002
  • Kizilay Mancini O, Acevedo M, Fazez N, et al. Oxidative stress-induced senescence mediates inflammatory and fibrotic phenotypes in fibroblasts from systemic sclerosis patients. Rheumatology (Oxford) 2022; 61:1265-75. doi: 10.1093/ rheumatology/keab477.
  • Ogawa F, Shimizu K, Muroi E, Hara T, Sato S. Increasing levels of serum antioxidant status, total antioxidant power, in systemic sclerosis. Clin Rheumatol 2011; 30: 921-5. doi: 10.1007/s10067.011.1695-4
  • Kavian N, Marut W, Servettaz A, et al. Reactive oxygen speciesmediated killing of activated fibroblasts by arsenic trioxide ameliorates fibrosis in a murine model of systemic sclerosis. Arthritis Rheum 2012; 64:3430-40. doi: 10.1002/art.34534
  • Marut W, Jamier V, Kavian N, et al. The natural organosulfur compound dipropyltetrasulfide prevents HOCl-induced systemic sclerosis in the mouse. Arthritis Res Ther 2013; 15: R167. doi: 10.1186/ar4351
  • van Bon L, Cossu M, Scharstuhl A, et al. Low heme oxygenase-1 levels in patients with systemic sclerosis are associated with an altered Toll-like receptor response: another role for CXCL4? Rheumatology (Oxford) 2016; 55:2066-73. doi: 10.1093/ rheumatology/kew251
  • Sun Q, Hu J, Yu P, et al. Peptide PD29 treats bleomycininduced pulmonary fibrosis by inhibiting the TGF-β/smad signaling pathway. Exp Lung Res 2019; 45:123-34. doi: 10.1080/01902.148.2019.1614696
  • Jones B. 2018. “FDA Reports for rheumatoid arthritis: Upadacitinib non-clinical review(s)”. FDA Reports, 2018.
  • Sun Q, Hu J, Yu P, et al. Peptide PD29 treats bleomycininduced pulmonary fibrosis by inhibiting the TGF-β/smad signaling pathway. Exp Lung Res 2019; 45: 123-34. doi: 10.1080/01902.148.2019.1614696.
  • Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37: 277-85. doi: 10.1016/j.clinbiochem.2003.11.015
  • Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38: 1103-11. DOI: 10.1016/j.clinbiochem.2005.08.008.
  • Aebi H. Catalase in vitro. Methods Enzymol 1984; 105:121-6.
  • Beutler E. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61: 882-8
  • Li M, Zhang X, Wang B, et al. Effect of JAK2/STAT3 signaling pathway on liver injury associated with severe acute pancreatitis in rats. Exp Ther Med 2018; 16: 2013-21. doi: 10.3892/etm.2018.6433
  • Murrell DF. A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol 1993; 28: 78-85. doi: 10.1016/0190-9622(93)70014-k
  • Luo JY, Liu X, Jiang M, Zhao HP, Zhao JJ. Oxidative stress markers in blood in systemic sclerosis: A metaanalysis. Mod Rheumatol 2017; 27: 306-14. doi: 10.1080/14397.595.2016.1206510
  • Tikly M, Channa K, Theodorou P, Gulumian M. Lipid peroxidation and trace elements in systemic sclerosis. Clin Rheumatol 2006; 25: 320-4. doi: 10.1007/s10067.005.0013-4
  • Riccieri V, Spadaro A, Fuksa L, et al. Specific oxidative stress parameters differently correlate with nailfold capillaroscopy changes and organ involvement in systemic sclerosis. Clin Rheumatol 2008; 27: 225-30. doi: 10.1007/s10067.007.0769-9
  • Ogawa F, Shimizu K, Muroi E, et al. Serum levels of 8-isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis. Rheumatology (Oxford) 2006; 45: 815-8. doi: 10.1093/rheumatology/kel012
  • Servettaz A, Guilpain P, Goulvestre C, et al. Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis 2007; 66: 1202-9. doi: 10.1136/ard.2006.067504
  • Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 2010; 48: 1-15. doi: 10.1016/j.freeradbiomed.2009.09.026
  • Albright CD, Salganik RI, Craciunescu CN, Mar MH, Zeisel SH. Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta1 in immortalized rat hepatocytes. J Cell Biochem 2003; 89: 254-61. doi: 10.1002/jcb.10498
  • Herrera B, Murillo MM, Alvarez-Barrientos A, et al. Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes. Free Radic Biol Med 2004; 36: 16-26. doi: 10.1016/j. freeradbiomed.2003.09.020
  • Ishikawa F, Kaneko E, Sugimoto T, et al. A mitochondrial thioredoxin-sensitive mechanism regulates TGF-β-mediated gene expression associated with epithelial-mesenchymal transition. Biochem Biophys Res Commun 2014; 443: 821-7. doi: 10.1016/j.bbrc.2013.12.050
  • Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012; 4: 1399-440. doi: 10.3390/nu4101399
  • Dooley A, Low SY, Holmes A, et al. Nitric oxide synthase expression and activity in the tight-skin mouse model of fibrosis. Rheumatology (Oxford) 2008; 47: 272-80. doi: 10.1093/rheumatology/kem303
  • Seiberlich B, Hunzelmann N, Krieg T, Weber M, Schulze- Lohoff E. Intermediate molecular weight proteinuria and albuminuria identify scleroderma patients with increased morbidity. Clin Nephrol 2008; 70: 110–7. doi: 10.5414/ cnp7011.
There are 66 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Original Research
Authors

Ayşe Koçak

Meliha Koldemir Gündüz

Güllü Kaymak

Elif Aydın

Publication Date January 28, 2024
Published in Issue Year 2024 Volume: 37 Issue: 1

Cite

APA Koçak, A., Koldemir Gündüz, M., Kaymak, G., Aydın, E. (2024). Effects of upadacitinib and PD29 on oxidative damage and inflammation in bleomycin-induced scleroderma model kidney tissues. Marmara Medical Journal, 37(1), 72-79. https://doi.org/10.5472/marumj.1381649
AMA Koçak A, Koldemir Gündüz M, Kaymak G, Aydın E. Effects of upadacitinib and PD29 on oxidative damage and inflammation in bleomycin-induced scleroderma model kidney tissues. Marmara Med J. January 2024;37(1):72-79. doi:10.5472/marumj.1381649
Chicago Koçak, Ayşe, Meliha Koldemir Gündüz, Güllü Kaymak, and Elif Aydın. “Effects of Upadacitinib and PD29 on Oxidative Damage and Inflammation in Bleomycin-Induced Scleroderma Model Kidney Tissues”. Marmara Medical Journal 37, no. 1 (January 2024): 72-79. https://doi.org/10.5472/marumj.1381649.
EndNote Koçak A, Koldemir Gündüz M, Kaymak G, Aydın E (January 1, 2024) Effects of upadacitinib and PD29 on oxidative damage and inflammation in bleomycin-induced scleroderma model kidney tissues. Marmara Medical Journal 37 1 72–79.
IEEE A. Koçak, M. Koldemir Gündüz, G. Kaymak, and E. Aydın, “Effects of upadacitinib and PD29 on oxidative damage and inflammation in bleomycin-induced scleroderma model kidney tissues”, Marmara Med J, vol. 37, no. 1, pp. 72–79, 2024, doi: 10.5472/marumj.1381649.
ISNAD Koçak, Ayşe et al. “Effects of Upadacitinib and PD29 on Oxidative Damage and Inflammation in Bleomycin-Induced Scleroderma Model Kidney Tissues”. Marmara Medical Journal 37/1 (January 2024), 72-79. https://doi.org/10.5472/marumj.1381649.
JAMA Koçak A, Koldemir Gündüz M, Kaymak G, Aydın E. Effects of upadacitinib and PD29 on oxidative damage and inflammation in bleomycin-induced scleroderma model kidney tissues. Marmara Med J. 2024;37:72–79.
MLA Koçak, Ayşe et al. “Effects of Upadacitinib and PD29 on Oxidative Damage and Inflammation in Bleomycin-Induced Scleroderma Model Kidney Tissues”. Marmara Medical Journal, vol. 37, no. 1, 2024, pp. 72-79, doi:10.5472/marumj.1381649.
Vancouver Koçak A, Koldemir Gündüz M, Kaymak G, Aydın E. Effects of upadacitinib and PD29 on oxidative damage and inflammation in bleomycin-induced scleroderma model kidney tissues. Marmara Med J. 2024;37(1):72-9.