Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 4, 384 - 396, 31.12.2022
https://doi.org/10.33714/masteb.1159477

Abstract

References

  • Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227–1230. https://doi.org/10.1126/science.245.4923.1227
  • Alessandrini, A., Guizzardi, D., Janssens-Maenhout, G., Pisoni, E., Trombetti, M., & Vespe, M. (2017). Estimation of shipping emissions using vessel long range identification and tracking data. Journal of Maps, 13(2), 946-954. https://doi.org/10.1080/17445647.2017.1411842
  • Argonne National Laboratory. (2021). The greenhouse gases, regulated emissions, and energy use in technologies model; GREET version 1.3.0.13857. Lemont, Illinois, USA: Argonne National Laboratory. https://greet.es.anl.gov/
  • Beirle, S., Platt, U., Von Glasow, R., Wenig, M., & Wagner, T. (2004). Estimate of nitrogen oxide emissions from shipping by satellite remote sensing. Geophysical Research Letters, 31(18), L18102. https://doi.org/10.1029/2004GL020312
  • Bilgili, L. (2021). Life cycle comparison of marine fuels for IMO 2020 Sulphur Cap. Science of The Total Environment, 774, 145719. https://doi.org/10.1016/j.scitotenv.2021.145719
  • Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V. V., Chance, V. V., & Goede, A. P. H. (1999). SCIAMACHY: Mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2), 127-150. https://doi.org/10.1175/1520-0469(1999)056%3C0127:SMOAMM%3E2.0.CO;2
  • Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bønløkke, J. H., Sigsgaard, T., Geels, C., Gross, C., Hansen, A. B., Hansen, K. B., Hedegaard, G. B., Kaas, E., & Frohn, L. M. (2013). Assessment of past, present, and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system. Atmospheric Chemistry and Physics, 13(15), 7747-7764. https://doi.org/10.5194/acp-13-7747-2013
  • Burkert, J., Andres-Hernandez, M. D., Stobener, D., & Burrows, J. P. (2001). Peroxy radical and related trace gas measurements in the boundary layer above the Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 106(D6), 5457–5477 https://doi.org/10.1029/2000JD900613
  • Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K. -U., Eisinger, M., & Perner, D. (1999). The global ozone monitoring experiment (GOME): Mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2), 151-175. https://doi.org/10.1175/1520-0469(1999)056%3C0151:TGOMEG%3E2.0.CO;2
  • Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., & Lefebvre, A. (2000). GOME-2-Metop’s second-generation sensor for operational ozone monitoring. ESA Bulletin, 102, 28-36.
  • Christensen, M. W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M., Douglas, A., Feingold, G., Glassmeier, F., Goren, T., Grosvenor, D. P., Gryspeerdt, E., Kahn, R., Li, Z., Ma, P. – L., Malavelle, F., McCoy, I. L., McCoy, D., T., McFarquhar, G., Mülmenstädt, J., Pal, S., Possner, A., Povey, A., Quaas, J., Rosenfeld, D., Schmidt, A., Schrödner, R., Sorooshian, A., Stier, P., Toll, V., Watson-Parris, D., Wood, R., Yang, M., & Yuan, T. (2022). Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 22(1), 641-674. https://doi.org/10.5194/acp-22-641-2022
  • Corbin, J. C., Peng, W., Yang, J., Sommer, D. E., Trivanovic, U., Kirchen, P., Miller J.W., Rogak S., Cocker, D., Smallwood, G.J., Lobo P., & Gagné, S. (2020). Characterization of particulate matter emitted by a marine engine operated with liquefied natural gas and diesel fuels. Atmospheric Environment, 220, 117030. https://doi.org/10.1016/j.atmosenv.2019.117030
  • Davis, D. D., Grodzinsky, G., Kasibhatla, P., Crawford, J., Chen, G., Liu, S., Bandy, A., Thornton, D., Guan, H., & Sandholm, S. (2001). Impact of ship emissions on marine boundary layer NOx and SO2 distributions over the Pacific basin. Geophysical Research Letters, 28(2), 235–238 https://doi.org/10.1029/2000GL012013
  • De Smedt, I., Yu, H., Richter, A., Beirle, S., Eskes, H., Boersma, K.F., Van Roozendael, M., Van Geffen, J., Lorente, A., & Peters, E. (2017). QA4ECV HCHO tropospheric column data from OMI (Version 1.1) [Data set]. Royal Belgian Institute for Space Aeronomy. http://doi.org/10.18758/71021031
  • Deniz, C., & Durmuşoğlu, Y. (2008). Estimating shipping emissions in the region of the Sea of Marmara, Turkey. Science of the Total Environment, 390(1), 255-261. https://doi.org/10.1016/j.scitotenv.2007.09.033
  • DNV GL. (2018). Maritime Forecast to 2050. Retrieved on July 6, 2022, from https://www.dnvgl.com/publications/maritime-forecast-to-2050-107160
  • European Environment Agency. (2021). Emissions of air pollutants from transport. https://www.eea.europa.eu/ims
  • Eyring, V., Isaksen, I. S., Berntsen, T., Collins, W. J., Corbett, J. J., Endresen, O., Grainger R. G., Moldanova J., Schlager H., & Stevenson, D. S. (2010). Transport impacts on atmosphere and climate: Shipping. Atmospheric Environment, 44(37), 4735-4771. https://doi.org/10.1016/j.atmosenv.2009.04.059
  • Filimonova, I. V., Komarova, A. V., Sharma, R., & Novikov, A. Y. (2022). Transformation of international liquefied natural gas markets: New trade routes. Energy Reports, 8, 675-682. https://doi.org/10.1016/j.egyr.2022.07.069 Fuglestvedt, J., Berntsen, T., Eyring, V., Isaksen, I., Lee, D. S., & Sausen, R. (2009). Shipping emissions: From cooling to warming of climate—and reducing impacts on health. Environmental Science & Technology, 43(24), 9057-9062. https://doi.org/10.1021/es901944r
  • Glassmeier, F., Hoffmann, F., Johnson, J. S., Yamaguchi, T., Carslaw, K. S., & Feingold, G. (2021). Aerosol-cloud-climate cooling overestimated by ship-track data. Science, 371(6528), 485-489. https://doi.org/10.1126/science.abd3980
  • González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., & Suleiman, R. (2015). Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 8(1), 19-32. https://doi.org/10.5194/amt-8-19-2015
  • Gopikrishnan, G. S., & Kuttippurath, J. (2021). A decade of satellite observations reveal significant increase in atmospheric formaldehyde from shipping in Indian Ocean. Atmospheric Environment, 246, 118095. https://doi.org/10.1016/j.atmosenv.2020.118095
  • Gryspeerdt, E., Smith, T. W., O'Keeffe, E., Christensen, M. W., & Goldsworth, F. W. (2019). The impact of ship emission controls recorded by cloud properties. Geophysical Research Letters, 46(21), 12547-12555. https://doi.org/10.1029/2019GL084700
  • IGU, (2022). “World LNG Report 2022” International Gas Union, 2022. https://www.igu.org/resources/world-lng-report-2022/
  • IMO. (2010). Full report of the work undertaken by the expert group on feasibility study and impact assessment of possible market-based measures, IMOdoc. MEPC 61/INF.2.
  • IMO. (2018). Initial IMO strategy on reduction of GHG emissions from ships. Marine Environment Protection Committee.
  • IMO. (2021). Fourth IMO GHG Study. International Maritime Organisation (IMO).
  • IMO. (2022a). Draft MEPC Resolution, Protecting the Arctic from Shipping Black Carbon Emissions. IMO moves ahead on GHG emissions, Black Carbon and marine littering. Black carbon in the Arctic - resolution adopted. MEPC 77/J/9.
  • IMO. (2022b). Historic Background. Energy efficiency of international shipping. Jensen, M., Wang, J., & Wood, R. (2016). Atmospheric system research marine low clouds workshop report (No. DOE/SC-ASR-16-001). https://doi.org/10.2172/1576578
  • Jin, Q., Grandey, B. S., Rothenberg, D., Avramov, A., & Wang, C. (2018a). Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions. Atmospheric Chemistry and Physics, 18(22), 16793-16808. https://doi.org/10.5194/acp-18-16793-2018
  • Jin, X., Fiore, A. M., Geigert, M. et al. (2018b). Using satellite observed formaldehyde (HCHO) and nitrogen dioxide (NO2) as an indicator of ozone sensitivity in a SIP. HAQAST Tech. Guid. Doc. No. 1. https://doi.org/10.7916/D8M34C7V
  • Johnson, B. T., Shine, K. P., & Forster, P. M. (2004). The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130(599), 1407-1422. https://doi.org/10.1256/qj.03.61
  • Kim, Hyun S., C. H. Song, R. S. Park, G. Huey, & J. Y. Ryu. (2009). Investigation of ship-plume chemistry using a newly-developed photochemical/dynamic ship-plume model. Atmospheric Chemistry and Physics, 9(19), 7531-7550. https://doi.org/10.5194/acp-9-7531-2009
  • Kontovas, C. A. (2020). Integration of air quality and climate change policies in shipping: The case of sulphur emissions regulation. Marine Policy, 113, 103815. https://doi.org/10.1016/j.marpol.2020.103815
  • Lauer, A., Eyring, V., Corbett, J. J., Wang, C., & Winebrake, J. J. (2009). Assessment of near-future policy instruments for oceangoing shipping: impact on atmospheric aerosol burdens and the earth’s radiation budget. https://doi.org/10.1021/es900922h
  • Lauer, A., Eyring, V., Hendricks, J., Jöckel, P., & Lohmann, U. (2007). Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmospheric Chemistry and Physics, 7(19), 5061-5079. https://doi.org/10.5194/acp-7-5061-2007
  • Levelt, P. F., Van Den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H., De Vries, J., Stammer, P., Lundell, J. O. V., & Saari, H. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1093-1101. https://doi.org/10.1109/TGRS.2006.872333
  • Lindstad, H., Eskeland, G. S., Psaraftis, H., Sandaas, I., & Strømman, A. H. (2015). Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Engineering, 110, 94-101. https://doi.org/10.1016/j.oceaneng.2015.09.029
  • Marbach, T., Beirle, S., Platt, U., Hoor, P., Wittrock, F., Richter, A., Vrekoussis, M., Grzegorski, M., Burrows, J. P., & Wagner, T. (2009). Satellite measurements of formaldehyde linked to shipping emissions. Atmospheric Chemistry and Physics, 9(21), 8223-8234. https://doi.org/10.5194/acp-9-8223-2009
  • Miller, W., Johnson, K. C., Peng, W., & Yang, J. J. (2020). Local air benefits by switching from diesel fuel to LNG on a marine vessel. Final Report. Bourns College of Engineering-Center for Environmental Research and Technology University of California Riverside.
  • Myhre, G., Shindell, D., & Pongratz, J. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.)]. Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 659–740, https://doi.org/10.1017/CBO9781107415324.018
  • Pavlenko, N., Comer, B., Zhou, Y., Clark, N., & Rutherford, D. (2020). The climate implications of using LNG as a marine fuel. The International Council on Clean Transportation: Berlin, Germany. https://theicct.org/publication/the-climate-implications-of-using-lng-as-a-marine-fuel/
  • Peng, W., Yang, J., Corbin, J., Trivanovic, U., Lobo, P., Kirchen, P., Rogak, S., Gagné, S., Miller, J. W., & Cocker, D. (2020). Comprehensive analysis of the air quality impacts of switching a marine vessel from diesel fuel to natural gas. Environmental Pollution, 266(Part 3), 115404. https://doi.org/10.1016/j.envpol.2020.115404
  • Peters, K., Quaas, J., & Graßl, H. (2011). A search for large‐scale effects of ship emissions on clouds and radiation in satellite data. Journal of Geophysical Research: Atmospheres, 116(D24), D24205. https://doi.org/10.1029/2011JD016531
  • Shine, K. P., Allan, R. P., Collins, W. J., & Fuglestvedt, J. S. (2015). Metrics for linking emissions of gases and aerosols to global precipitation changes. Earth System Dynamics, 6(2), 525-540. https://doi.org/10.5194/esd-6-525-2015
  • Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., & Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3), 281-302. https://doi.org/10.1007/s10584-005-1146-9
  • Sofiev, M., Winebrake, J. J., Johansson, L., Carr, E. W., Prank, M., Soares, J., Vira, J., Kouznetsov, R., Jalkanen, J.-P., & Corbett, J. J. (2018). Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nature Communications, 9(1), 406. https://doi.org/10.1038/s41467-017-02774-9
  • Song, C. H., Kim, H. S., von Glasow, R., Brimblecombe, P., Kim, J., Park, R. J., Woo, J. H., & Kim, Y. H. (2010). Source identification and budget analysis on elevated levels of formaldehyde within the ship plumes: A ship-plume photochemical/dynamic model analysis. Atmospheric Chemistry and Physics, 10(23), 11969-11985. https://doi.org/10.5194/acp-10-11969-2010
  • TEMIS. (2022). Tropospheric Emission Monitoring Internet Service. https://www.temis.nl/index.php Topic, T., Murphy, A. J., Pazouki, K., & Norman, R. (2021). Assessment of ship emissions in coastal waters using spatial projections of ship tracks, ship voyage and engine specification data. Cleaner Engineering and Technology, 2, 100089. https://doi.org/10.1016/j.clet.2021.100089
  • Twomey, S. (1974). Pollution and the planetary albedo. Atmospheric Environment, 12(8), 1251–1256. https://doi.org/10.1016/0004-6981(74)90004-3
  • UNCTAD. (2021a). Review of maritime transport 2021: Challenges faced by seafarers in view of the COVID-19 crisis. https://unctad.org/webflyer/review-maritime-transport-2021
  • UNCTAD. (2021b). Port calls, time spent in ports, vessel age and size in 2020. UNCTAD Secretariat, based on data provided by MarineTraffic (http://marinetraffic.com). Ships of 1000 GT and above. https://unctadstat.unctad.org/CountryProfile/MaritimeProfile/en-GB/792/index.html
  • Yu, C., Pasternak, D., Lee, J., Yang, M., Bell, T., Bower, K., Wu, H., Liu, D., Reed, C., Bauguitte, S., Cliff, S., Trembath, J., Coe, H., & Allan, J. D. (2020). Characterizing the particle composition and cloud condensation nuclei from shipping emission in Western Europe. Environmental Science & Technology, 54(24), 15604-15612. https://doi.org/10.1021/acs.est.0c04039
  • Yuan, T., Song, H., Wood, R., Wang, C., Oreopoulos, L., Platnick, S. E., von Hippel, S., Meyer, K., Light, S., & Wilcox, E. (2022). Global reduction in ship-tracks from sulfur regulations for shipping fuel. Science Advances, 8(29), eabn7988. https://doi.org/10.1126/sciadv.abn7988
  • Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R. M., Sulprizio, M. P., De Smedt, I., Abad, G. G., Chance, K., Li, C., Ferrare, R., Fried, A., Hair, J. W., Hanisco, T. F., Richter, D., Scarino, A. J., Walega, J., Weibring, P., & Wolfe, G. M. (2016). Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the Southeast US. Atmospheric Chemistry and Physics, 16(21), 13477-13490. https://doi.org/10.5194/acp-16-13477-2016

Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer

Year 2022, Volume: 11 Issue: 4, 384 - 396, 31.12.2022
https://doi.org/10.33714/masteb.1159477

Abstract

One of the reasons that anthropogenic greenhouse gas emissions estimation is imprecise is the uncertainty of aerosol impacts on cloud properties. Maritime transportation is slowly changing fuel preferences. With the policy framework changing regulations, the shipping business is going in a direction that emits less sulfur dioxide and black carbon, which are the compounds that cause linear cloud formations known as ship tracks. Aside from their effects on the total radiative forcing of a transportation mean, this phenomenon enables the detection of ships via satellite imagery sensors. The rapidly increasing trend of shifting propulsion of maritime transportation from conventional heavy fuel oil and distillate marine fuels to liquefied natural gas causes enormous hikes in methane emissions. Therefore, oxidation of the volatile organic compound in the marine boundary layer by the hydroxyl radical in the troposphere makes significant deposition of formaldehyde which causes human effects, ecosystem damage, and climate impact. The primary triggering substance among the compounds in the ship plume is methane. This paper discusses methods to assess near real time tracking of anomalies and the deposition of the short lived substance in different seasons in one of the main occurring areas, shipping corridors. The study also employs anomaly map analysis for June and December 2010 and 2020. Several global tracking methods are available with satellites, monitoring experiments, and other satellite tracking tools. Apart from a few areas the results are not indicative since the formaldehyde formations caused by LNG fueled ships are not widespread enough alongside with overall LNG fueled fleet. On the other hand, the analysis and method are promising for the follow-up of the emissions in the future.

References

  • Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227–1230. https://doi.org/10.1126/science.245.4923.1227
  • Alessandrini, A., Guizzardi, D., Janssens-Maenhout, G., Pisoni, E., Trombetti, M., & Vespe, M. (2017). Estimation of shipping emissions using vessel long range identification and tracking data. Journal of Maps, 13(2), 946-954. https://doi.org/10.1080/17445647.2017.1411842
  • Argonne National Laboratory. (2021). The greenhouse gases, regulated emissions, and energy use in technologies model; GREET version 1.3.0.13857. Lemont, Illinois, USA: Argonne National Laboratory. https://greet.es.anl.gov/
  • Beirle, S., Platt, U., Von Glasow, R., Wenig, M., & Wagner, T. (2004). Estimate of nitrogen oxide emissions from shipping by satellite remote sensing. Geophysical Research Letters, 31(18), L18102. https://doi.org/10.1029/2004GL020312
  • Bilgili, L. (2021). Life cycle comparison of marine fuels for IMO 2020 Sulphur Cap. Science of The Total Environment, 774, 145719. https://doi.org/10.1016/j.scitotenv.2021.145719
  • Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V. V., Chance, V. V., & Goede, A. P. H. (1999). SCIAMACHY: Mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2), 127-150. https://doi.org/10.1175/1520-0469(1999)056%3C0127:SMOAMM%3E2.0.CO;2
  • Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bønløkke, J. H., Sigsgaard, T., Geels, C., Gross, C., Hansen, A. B., Hansen, K. B., Hedegaard, G. B., Kaas, E., & Frohn, L. M. (2013). Assessment of past, present, and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system. Atmospheric Chemistry and Physics, 13(15), 7747-7764. https://doi.org/10.5194/acp-13-7747-2013
  • Burkert, J., Andres-Hernandez, M. D., Stobener, D., & Burrows, J. P. (2001). Peroxy radical and related trace gas measurements in the boundary layer above the Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 106(D6), 5457–5477 https://doi.org/10.1029/2000JD900613
  • Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K. -U., Eisinger, M., & Perner, D. (1999). The global ozone monitoring experiment (GOME): Mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2), 151-175. https://doi.org/10.1175/1520-0469(1999)056%3C0151:TGOMEG%3E2.0.CO;2
  • Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., & Lefebvre, A. (2000). GOME-2-Metop’s second-generation sensor for operational ozone monitoring. ESA Bulletin, 102, 28-36.
  • Christensen, M. W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M., Douglas, A., Feingold, G., Glassmeier, F., Goren, T., Grosvenor, D. P., Gryspeerdt, E., Kahn, R., Li, Z., Ma, P. – L., Malavelle, F., McCoy, I. L., McCoy, D., T., McFarquhar, G., Mülmenstädt, J., Pal, S., Possner, A., Povey, A., Quaas, J., Rosenfeld, D., Schmidt, A., Schrödner, R., Sorooshian, A., Stier, P., Toll, V., Watson-Parris, D., Wood, R., Yang, M., & Yuan, T. (2022). Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 22(1), 641-674. https://doi.org/10.5194/acp-22-641-2022
  • Corbin, J. C., Peng, W., Yang, J., Sommer, D. E., Trivanovic, U., Kirchen, P., Miller J.W., Rogak S., Cocker, D., Smallwood, G.J., Lobo P., & Gagné, S. (2020). Characterization of particulate matter emitted by a marine engine operated with liquefied natural gas and diesel fuels. Atmospheric Environment, 220, 117030. https://doi.org/10.1016/j.atmosenv.2019.117030
  • Davis, D. D., Grodzinsky, G., Kasibhatla, P., Crawford, J., Chen, G., Liu, S., Bandy, A., Thornton, D., Guan, H., & Sandholm, S. (2001). Impact of ship emissions on marine boundary layer NOx and SO2 distributions over the Pacific basin. Geophysical Research Letters, 28(2), 235–238 https://doi.org/10.1029/2000GL012013
  • De Smedt, I., Yu, H., Richter, A., Beirle, S., Eskes, H., Boersma, K.F., Van Roozendael, M., Van Geffen, J., Lorente, A., & Peters, E. (2017). QA4ECV HCHO tropospheric column data from OMI (Version 1.1) [Data set]. Royal Belgian Institute for Space Aeronomy. http://doi.org/10.18758/71021031
  • Deniz, C., & Durmuşoğlu, Y. (2008). Estimating shipping emissions in the region of the Sea of Marmara, Turkey. Science of the Total Environment, 390(1), 255-261. https://doi.org/10.1016/j.scitotenv.2007.09.033
  • DNV GL. (2018). Maritime Forecast to 2050. Retrieved on July 6, 2022, from https://www.dnvgl.com/publications/maritime-forecast-to-2050-107160
  • European Environment Agency. (2021). Emissions of air pollutants from transport. https://www.eea.europa.eu/ims
  • Eyring, V., Isaksen, I. S., Berntsen, T., Collins, W. J., Corbett, J. J., Endresen, O., Grainger R. G., Moldanova J., Schlager H., & Stevenson, D. S. (2010). Transport impacts on atmosphere and climate: Shipping. Atmospheric Environment, 44(37), 4735-4771. https://doi.org/10.1016/j.atmosenv.2009.04.059
  • Filimonova, I. V., Komarova, A. V., Sharma, R., & Novikov, A. Y. (2022). Transformation of international liquefied natural gas markets: New trade routes. Energy Reports, 8, 675-682. https://doi.org/10.1016/j.egyr.2022.07.069 Fuglestvedt, J., Berntsen, T., Eyring, V., Isaksen, I., Lee, D. S., & Sausen, R. (2009). Shipping emissions: From cooling to warming of climate—and reducing impacts on health. Environmental Science & Technology, 43(24), 9057-9062. https://doi.org/10.1021/es901944r
  • Glassmeier, F., Hoffmann, F., Johnson, J. S., Yamaguchi, T., Carslaw, K. S., & Feingold, G. (2021). Aerosol-cloud-climate cooling overestimated by ship-track data. Science, 371(6528), 485-489. https://doi.org/10.1126/science.abd3980
  • González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., & Suleiman, R. (2015). Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 8(1), 19-32. https://doi.org/10.5194/amt-8-19-2015
  • Gopikrishnan, G. S., & Kuttippurath, J. (2021). A decade of satellite observations reveal significant increase in atmospheric formaldehyde from shipping in Indian Ocean. Atmospheric Environment, 246, 118095. https://doi.org/10.1016/j.atmosenv.2020.118095
  • Gryspeerdt, E., Smith, T. W., O'Keeffe, E., Christensen, M. W., & Goldsworth, F. W. (2019). The impact of ship emission controls recorded by cloud properties. Geophysical Research Letters, 46(21), 12547-12555. https://doi.org/10.1029/2019GL084700
  • IGU, (2022). “World LNG Report 2022” International Gas Union, 2022. https://www.igu.org/resources/world-lng-report-2022/
  • IMO. (2010). Full report of the work undertaken by the expert group on feasibility study and impact assessment of possible market-based measures, IMOdoc. MEPC 61/INF.2.
  • IMO. (2018). Initial IMO strategy on reduction of GHG emissions from ships. Marine Environment Protection Committee.
  • IMO. (2021). Fourth IMO GHG Study. International Maritime Organisation (IMO).
  • IMO. (2022a). Draft MEPC Resolution, Protecting the Arctic from Shipping Black Carbon Emissions. IMO moves ahead on GHG emissions, Black Carbon and marine littering. Black carbon in the Arctic - resolution adopted. MEPC 77/J/9.
  • IMO. (2022b). Historic Background. Energy efficiency of international shipping. Jensen, M., Wang, J., & Wood, R. (2016). Atmospheric system research marine low clouds workshop report (No. DOE/SC-ASR-16-001). https://doi.org/10.2172/1576578
  • Jin, Q., Grandey, B. S., Rothenberg, D., Avramov, A., & Wang, C. (2018a). Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions. Atmospheric Chemistry and Physics, 18(22), 16793-16808. https://doi.org/10.5194/acp-18-16793-2018
  • Jin, X., Fiore, A. M., Geigert, M. et al. (2018b). Using satellite observed formaldehyde (HCHO) and nitrogen dioxide (NO2) as an indicator of ozone sensitivity in a SIP. HAQAST Tech. Guid. Doc. No. 1. https://doi.org/10.7916/D8M34C7V
  • Johnson, B. T., Shine, K. P., & Forster, P. M. (2004). The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130(599), 1407-1422. https://doi.org/10.1256/qj.03.61
  • Kim, Hyun S., C. H. Song, R. S. Park, G. Huey, & J. Y. Ryu. (2009). Investigation of ship-plume chemistry using a newly-developed photochemical/dynamic ship-plume model. Atmospheric Chemistry and Physics, 9(19), 7531-7550. https://doi.org/10.5194/acp-9-7531-2009
  • Kontovas, C. A. (2020). Integration of air quality and climate change policies in shipping: The case of sulphur emissions regulation. Marine Policy, 113, 103815. https://doi.org/10.1016/j.marpol.2020.103815
  • Lauer, A., Eyring, V., Corbett, J. J., Wang, C., & Winebrake, J. J. (2009). Assessment of near-future policy instruments for oceangoing shipping: impact on atmospheric aerosol burdens and the earth’s radiation budget. https://doi.org/10.1021/es900922h
  • Lauer, A., Eyring, V., Hendricks, J., Jöckel, P., & Lohmann, U. (2007). Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmospheric Chemistry and Physics, 7(19), 5061-5079. https://doi.org/10.5194/acp-7-5061-2007
  • Levelt, P. F., Van Den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H., De Vries, J., Stammer, P., Lundell, J. O. V., & Saari, H. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1093-1101. https://doi.org/10.1109/TGRS.2006.872333
  • Lindstad, H., Eskeland, G. S., Psaraftis, H., Sandaas, I., & Strømman, A. H. (2015). Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Engineering, 110, 94-101. https://doi.org/10.1016/j.oceaneng.2015.09.029
  • Marbach, T., Beirle, S., Platt, U., Hoor, P., Wittrock, F., Richter, A., Vrekoussis, M., Grzegorski, M., Burrows, J. P., & Wagner, T. (2009). Satellite measurements of formaldehyde linked to shipping emissions. Atmospheric Chemistry and Physics, 9(21), 8223-8234. https://doi.org/10.5194/acp-9-8223-2009
  • Miller, W., Johnson, K. C., Peng, W., & Yang, J. J. (2020). Local air benefits by switching from diesel fuel to LNG on a marine vessel. Final Report. Bourns College of Engineering-Center for Environmental Research and Technology University of California Riverside.
  • Myhre, G., Shindell, D., & Pongratz, J. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.)]. Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 659–740, https://doi.org/10.1017/CBO9781107415324.018
  • Pavlenko, N., Comer, B., Zhou, Y., Clark, N., & Rutherford, D. (2020). The climate implications of using LNG as a marine fuel. The International Council on Clean Transportation: Berlin, Germany. https://theicct.org/publication/the-climate-implications-of-using-lng-as-a-marine-fuel/
  • Peng, W., Yang, J., Corbin, J., Trivanovic, U., Lobo, P., Kirchen, P., Rogak, S., Gagné, S., Miller, J. W., & Cocker, D. (2020). Comprehensive analysis of the air quality impacts of switching a marine vessel from diesel fuel to natural gas. Environmental Pollution, 266(Part 3), 115404. https://doi.org/10.1016/j.envpol.2020.115404
  • Peters, K., Quaas, J., & Graßl, H. (2011). A search for large‐scale effects of ship emissions on clouds and radiation in satellite data. Journal of Geophysical Research: Atmospheres, 116(D24), D24205. https://doi.org/10.1029/2011JD016531
  • Shine, K. P., Allan, R. P., Collins, W. J., & Fuglestvedt, J. S. (2015). Metrics for linking emissions of gases and aerosols to global precipitation changes. Earth System Dynamics, 6(2), 525-540. https://doi.org/10.5194/esd-6-525-2015
  • Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., & Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3), 281-302. https://doi.org/10.1007/s10584-005-1146-9
  • Sofiev, M., Winebrake, J. J., Johansson, L., Carr, E. W., Prank, M., Soares, J., Vira, J., Kouznetsov, R., Jalkanen, J.-P., & Corbett, J. J. (2018). Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nature Communications, 9(1), 406. https://doi.org/10.1038/s41467-017-02774-9
  • Song, C. H., Kim, H. S., von Glasow, R., Brimblecombe, P., Kim, J., Park, R. J., Woo, J. H., & Kim, Y. H. (2010). Source identification and budget analysis on elevated levels of formaldehyde within the ship plumes: A ship-plume photochemical/dynamic model analysis. Atmospheric Chemistry and Physics, 10(23), 11969-11985. https://doi.org/10.5194/acp-10-11969-2010
  • TEMIS. (2022). Tropospheric Emission Monitoring Internet Service. https://www.temis.nl/index.php Topic, T., Murphy, A. J., Pazouki, K., & Norman, R. (2021). Assessment of ship emissions in coastal waters using spatial projections of ship tracks, ship voyage and engine specification data. Cleaner Engineering and Technology, 2, 100089. https://doi.org/10.1016/j.clet.2021.100089
  • Twomey, S. (1974). Pollution and the planetary albedo. Atmospheric Environment, 12(8), 1251–1256. https://doi.org/10.1016/0004-6981(74)90004-3
  • UNCTAD. (2021a). Review of maritime transport 2021: Challenges faced by seafarers in view of the COVID-19 crisis. https://unctad.org/webflyer/review-maritime-transport-2021
  • UNCTAD. (2021b). Port calls, time spent in ports, vessel age and size in 2020. UNCTAD Secretariat, based on data provided by MarineTraffic (http://marinetraffic.com). Ships of 1000 GT and above. https://unctadstat.unctad.org/CountryProfile/MaritimeProfile/en-GB/792/index.html
  • Yu, C., Pasternak, D., Lee, J., Yang, M., Bell, T., Bower, K., Wu, H., Liu, D., Reed, C., Bauguitte, S., Cliff, S., Trembath, J., Coe, H., & Allan, J. D. (2020). Characterizing the particle composition and cloud condensation nuclei from shipping emission in Western Europe. Environmental Science & Technology, 54(24), 15604-15612. https://doi.org/10.1021/acs.est.0c04039
  • Yuan, T., Song, H., Wood, R., Wang, C., Oreopoulos, L., Platnick, S. E., von Hippel, S., Meyer, K., Light, S., & Wilcox, E. (2022). Global reduction in ship-tracks from sulfur regulations for shipping fuel. Science Advances, 8(29), eabn7988. https://doi.org/10.1126/sciadv.abn7988
  • Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R. M., Sulprizio, M. P., De Smedt, I., Abad, G. G., Chance, K., Li, C., Ferrare, R., Fried, A., Hair, J. W., Hanisco, T. F., Richter, D., Scarino, A. J., Walega, J., Weibring, P., & Wolfe, G. M. (2016). Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the Southeast US. Atmospheric Chemistry and Physics, 16(21), 13477-13490. https://doi.org/10.5194/acp-16-13477-2016
There are 55 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Ufuk Yakup Çalışkan 0000-0001-8107-7197

Burak Zincir 0000-0002-6719-4730

Early Pub Date September 30, 2022
Publication Date December 31, 2022
Submission Date August 8, 2022
Acceptance Date October 7, 2022
Published in Issue Year 2022 Volume: 11 Issue: 4

Cite

APA Çalışkan, U. Y., & Zincir, B. (2022). Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer. Marine Science and Technology Bulletin, 11(4), 384-396. https://doi.org/10.33714/masteb.1159477
AMA Çalışkan UY, Zincir B. Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer. Mar. Sci. Tech. Bull. December 2022;11(4):384-396. doi:10.33714/masteb.1159477
Chicago Çalışkan, Ufuk Yakup, and Burak Zincir. “Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer”. Marine Science and Technology Bulletin 11, no. 4 (December 2022): 384-96. https://doi.org/10.33714/masteb.1159477.
EndNote Çalışkan UY, Zincir B (December 1, 2022) Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer. Marine Science and Technology Bulletin 11 4 384–396.
IEEE U. Y. Çalışkan and B. Zincir, “Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer”, Mar. Sci. Tech. Bull., vol. 11, no. 4, pp. 384–396, 2022, doi: 10.33714/masteb.1159477.
ISNAD Çalışkan, Ufuk Yakup - Zincir, Burak. “Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer”. Marine Science and Technology Bulletin 11/4 (December 2022), 384-396. https://doi.org/10.33714/masteb.1159477.
JAMA Çalışkan UY, Zincir B. Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer. Mar. Sci. Tech. Bull. 2022;11:384–396.
MLA Çalışkan, Ufuk Yakup and Burak Zincir. “Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer”. Marine Science and Technology Bulletin, vol. 11, no. 4, 2022, pp. 384-96, doi:10.33714/masteb.1159477.
Vancouver Çalışkan UY, Zincir B. Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer. Mar. Sci. Tech. Bull. 2022;11(4):384-96.

27116