Review
BibTex RIS Cite

The Effect of Production Parameters on the Mechanical Performance of Sandwich Structures Manufactured by FDM Method

Year 2024, Volume: 5 Issue: 2, 75 - 88, 30.08.2024
https://doi.org/10.52795/mateca.1488266

Abstract

Additive manufacturing and the manufactured material technology are gaining increasing attention day by day. Among additive manufacturing methods, Fused Deposition Modeling (FDM) is the most commonly used production method. Factors such as the low cost of machines used in FDM, the ability to produce complex geometric structures in short production cycle times without the need for any cutting tools, and low waste material ratios are among the advantages offered by the method. Sandwich structures produced by this method attract researchers' interest due to their superior properties and functionality. Sandwich structures are defined as structures that are combined with a core material between inner and outer layers and are generally preferred for their lightweight and high strength. This study addresses the factors influencing the strength of sandwich structures, material selection, and layering methods. The most significant finding obtained from the research is that the strength properties exhibited separately by the polymers forming the sandwich structure can be enhanced when they come together to form the sandwich structure. The research aims to provide guidance for understanding the effect of production parameters on the strength properties of sandwich structures produced by Fused Deposition Modeling (FDM), optimizing the production process, and laying the groundwork for future applications.

References

  • K. Özsoy, B. Duman, Eklemeli imalat (3 boyutlu baskı) teknolojilerinin eğitimde kullanılabilirliği, International Journal of 3D Printing Technologies and Digital Industry, 1(1): 36-48, 2017.
  • Ş. Erener, S. Boz, Modern üretim tekniklerinde eklemeli imalat sistemlerinin yeri ve kullanım alanları, Turkish Journal of Fashion Design and Management, 3(1): 47-56, 2021.
  • T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143: 172-196, 2018.
  • J.S. Chohan, R. Singh, K.S. Boparai, R. Penna, F. Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications, Composites Part B: Engineering, 117: 138-149, 2017.
  • O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in manufacturing, 3: 42-53, 2015.
  • B.D. de Castro, F.D.C. Magalhães, T.H. Panzera, J.C. Campos Rubio, An assessment of fully integrated polymer sandwich structures designed by additive manufacturing, Journal of Materials Engineering and Performance, 30: 5031-5038, 2021.
  • H.Y. Sarvestani, A.H. Akbarzadeh, A. Mirbolghasemi, K. Hermenean, 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability, Materials & Design, 160: 179-193, 2018.
  • I. Ullah, M. Brandt, S. Feih, Failure and energy absorption characteristics of advanced 3D truss core structures, Materials & Design, 92: 937-948, 2016.
  • H. Mozafari, S. Khatami, H. Molatefi, Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress–Numerical study, Materials & Design, 66: 400-411, 2015.
  • Y. Feng, H. Qiu, Y. Gao, H. Zheng, J. Tan, Creative design for sandwich structures: A review, International Journal of Advanced Robotic Systems, 17(3): 1729881420921327, 2020.
  • N. Kladovasilakis, P. Charalampous, K. Tsongas, I. Kostavelis, D. Tzetzis, D. Tzovaras, Experimental and computational investigation of lattice sandwich structures constructed by additive manufacturing Technologies, Journal of Manufacturing and Materials Processing, 5(3): 95, 2021.
  • V. Acanfora, R. Castaldo, A. Riccio, On the effects of core microstructure on energy absorbing capabilities of sandwich panels intended for additive manufacturing, Materials, 15(4): 1291, 2022.
  • A. Rahimijonoush, M. Bayat, Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios, Thin-Walled Structures, 157: 107079, 2020.
  • H.P. Konka, M.A. Wahab, K. Lian, On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors, ASME. J. Eng. Mater. Technol, 134(1): 011010, 2012.
  • S.K. Dhinesh, P.S. Arun, K.K. Senthil, A. Megalingam, Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials, Materials Today: Proceedings, 45: 1175-1180, 2021.
  • P.K. Patro, S. Kandregula, M.S. Khan, S. Das, Investigation of mechanical properties of 3D printed sandwich structures using PLA and ABS, Materials Today: Proceedings, 2023.
  • P.K. Mishra, P. Senthil, Prediction of in-plane stiffness of multi-material 3D printed laminate parts fabricated by FDM process using CLT and its mechanical behaviour under tensile load, Materials Today Communications, 23: 100955, 2020.
  • P.V. Yap, M.Y. Chan, S.C. Koay, Preliminary Study on Mechanical Properties of 3D Printed Multi-materials ABS/PC Parts: Effect of Printing Parameters, Journal of Physical Science, 32(2): 87-104, 2021.
  • F. Wang, Y. Ji, C. Chen, G. Zhang, Z. Chen, Tensile properties of 3D printed structures of polylactide with thermoplastic polyurethane, Journal of Polymer Research, 29(8): 320, 2022.
  • B. Arifvianto, B.E. Satiti, U.A. Salim, Suyitno, A. Nuryanti, M. Mahardika, Mechanical properties of the FFF sandwich-structured parts made of PLA/TPU multi-material, Progress in Additive Manufacturing, 7(6): 1213-1223, 2022.
  • S. Kumar, R. Singh, M. Singh, Multi-material 3D printed PLA/PA6-TiO2 composite matrix: Rheological, thermal, tensile, morphological and 4D capabilities, Advances in Materials and Processing Technologies, 8(2): 2329-2348, 2022.
  • D.M. Baca Lopez, R. Ahmad, Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling, Polymers, 12(3): 651, 2020.
  • Q. Liu, Z. Zhang, D. Yavas, W. Shen, D. Wu, Multi-material additive manufacturing: effect of process parameters on flexural behavior of soft-hard sandwich beams, Rapid Prototyping Journal, 29(5): 885-896, 2023.
  • A.C. Pinho, A.P. Piedade, Sandwich multi-material 3D-printed polymers: influence of aging on the impact and flexure resistances, Polymers, 13(22): 4030, 2021.
  • S. Kumar, I. Singh, S.S.R. Koloor, D. Kumar, M.Y. Yahya, On laminated object manufactured FDM-printed ABS/TPU multimaterial specimens: An insight into mechanical and morphological characteristics, Polymers, 14(19): 4066, 2022.

FDM Yöntemi ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi

Year 2024, Volume: 5 Issue: 2, 75 - 88, 30.08.2024
https://doi.org/10.52795/mateca.1488266

Abstract

Eklemeli imalat ve üretilen malzeme teknolojisi her geçen gün daha fazla ilgi görmektedir. Eklemeli imalat yöntemleri içinde Eriyik Biriktirme Yöntemi (FDM) en yaygın kullanılan üretim metodudur. Eriyik Biriktirme Yönteminde kullanılan makinelerin maliyetinin ucuz olması, kompleks geometrili yapıların herhangi bir kesici takıma ihtiyaç duyulmadan kısa üretim döngü sürelerinde üretilebilmesi ve düşük artık malzeme oranları gibi unsurlar, yöntemin sunduğu avantajlar arasında gösterilmektedir. Bu yöntemle üretilen sandviç yapılar, üstün özellikleri ve fonksiyonelliği nedeni ile araştırmacıların ilgisini çekmektedir. Sandviç yapılar, iç ve dış katmanlar arasında bir çekirdek malzemesiyle birleştirilen yapılar olarak tanımlanır ve genellikle hafiflikleri ve yüksek mukavemetleri nedeniyle tercih edilirler. Bu çalışma, sandviç yapıların mukavemetini etkileyen faktörleri, malzeme seçimini, katmanlama yöntemlerini ele almaktadır. Araştırmadan elde edilen en önemli bulgu, sandviç yapıyı oluşturan polimerlerin ayrı ayrı sergiledikleri mukavemet özelliklerinin, sandviç yapıyı oluşturmak için bir araya geldiklerinde artırılabileceğidir. Yapılan araştırma, Eriyik Biriktirme Yöntemiyle üretilen sandviç yapılarda üretim parametrelerinin mukavemet özellikleri üzerindeki etkisini anlamak, üretim sürecini optimize etmek ve gelecekte yapılacak uygulamalar için bir temel oluşturmak için kılavuz sağlamayı amaçlamaktadır.

References

  • K. Özsoy, B. Duman, Eklemeli imalat (3 boyutlu baskı) teknolojilerinin eğitimde kullanılabilirliği, International Journal of 3D Printing Technologies and Digital Industry, 1(1): 36-48, 2017.
  • Ş. Erener, S. Boz, Modern üretim tekniklerinde eklemeli imalat sistemlerinin yeri ve kullanım alanları, Turkish Journal of Fashion Design and Management, 3(1): 47-56, 2021.
  • T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143: 172-196, 2018.
  • J.S. Chohan, R. Singh, K.S. Boparai, R. Penna, F. Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications, Composites Part B: Engineering, 117: 138-149, 2017.
  • O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in manufacturing, 3: 42-53, 2015.
  • B.D. de Castro, F.D.C. Magalhães, T.H. Panzera, J.C. Campos Rubio, An assessment of fully integrated polymer sandwich structures designed by additive manufacturing, Journal of Materials Engineering and Performance, 30: 5031-5038, 2021.
  • H.Y. Sarvestani, A.H. Akbarzadeh, A. Mirbolghasemi, K. Hermenean, 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability, Materials & Design, 160: 179-193, 2018.
  • I. Ullah, M. Brandt, S. Feih, Failure and energy absorption characteristics of advanced 3D truss core structures, Materials & Design, 92: 937-948, 2016.
  • H. Mozafari, S. Khatami, H. Molatefi, Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress–Numerical study, Materials & Design, 66: 400-411, 2015.
  • Y. Feng, H. Qiu, Y. Gao, H. Zheng, J. Tan, Creative design for sandwich structures: A review, International Journal of Advanced Robotic Systems, 17(3): 1729881420921327, 2020.
  • N. Kladovasilakis, P. Charalampous, K. Tsongas, I. Kostavelis, D. Tzetzis, D. Tzovaras, Experimental and computational investigation of lattice sandwich structures constructed by additive manufacturing Technologies, Journal of Manufacturing and Materials Processing, 5(3): 95, 2021.
  • V. Acanfora, R. Castaldo, A. Riccio, On the effects of core microstructure on energy absorbing capabilities of sandwich panels intended for additive manufacturing, Materials, 15(4): 1291, 2022.
  • A. Rahimijonoush, M. Bayat, Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios, Thin-Walled Structures, 157: 107079, 2020.
  • H.P. Konka, M.A. Wahab, K. Lian, On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors, ASME. J. Eng. Mater. Technol, 134(1): 011010, 2012.
  • S.K. Dhinesh, P.S. Arun, K.K. Senthil, A. Megalingam, Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials, Materials Today: Proceedings, 45: 1175-1180, 2021.
  • P.K. Patro, S. Kandregula, M.S. Khan, S. Das, Investigation of mechanical properties of 3D printed sandwich structures using PLA and ABS, Materials Today: Proceedings, 2023.
  • P.K. Mishra, P. Senthil, Prediction of in-plane stiffness of multi-material 3D printed laminate parts fabricated by FDM process using CLT and its mechanical behaviour under tensile load, Materials Today Communications, 23: 100955, 2020.
  • P.V. Yap, M.Y. Chan, S.C. Koay, Preliminary Study on Mechanical Properties of 3D Printed Multi-materials ABS/PC Parts: Effect of Printing Parameters, Journal of Physical Science, 32(2): 87-104, 2021.
  • F. Wang, Y. Ji, C. Chen, G. Zhang, Z. Chen, Tensile properties of 3D printed structures of polylactide with thermoplastic polyurethane, Journal of Polymer Research, 29(8): 320, 2022.
  • B. Arifvianto, B.E. Satiti, U.A. Salim, Suyitno, A. Nuryanti, M. Mahardika, Mechanical properties of the FFF sandwich-structured parts made of PLA/TPU multi-material, Progress in Additive Manufacturing, 7(6): 1213-1223, 2022.
  • S. Kumar, R. Singh, M. Singh, Multi-material 3D printed PLA/PA6-TiO2 composite matrix: Rheological, thermal, tensile, morphological and 4D capabilities, Advances in Materials and Processing Technologies, 8(2): 2329-2348, 2022.
  • D.M. Baca Lopez, R. Ahmad, Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling, Polymers, 12(3): 651, 2020.
  • Q. Liu, Z. Zhang, D. Yavas, W. Shen, D. Wu, Multi-material additive manufacturing: effect of process parameters on flexural behavior of soft-hard sandwich beams, Rapid Prototyping Journal, 29(5): 885-896, 2023.
  • A.C. Pinho, A.P. Piedade, Sandwich multi-material 3D-printed polymers: influence of aging on the impact and flexure resistances, Polymers, 13(22): 4030, 2021.
  • S. Kumar, I. Singh, S.S.R. Koloor, D. Kumar, M.Y. Yahya, On laminated object manufactured FDM-printed ABS/TPU multimaterial specimens: An insight into mechanical and morphological characteristics, Polymers, 14(19): 4066, 2022.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing Processes and Technologies (Excl. Textiles)
Journal Section Review
Authors

Kürşad Ertuğrul Bay 0000-0002-0354-1895

Gültekin Uzun 0000-0002-6820-8209

Early Pub Date August 23, 2024
Publication Date August 30, 2024
Submission Date May 22, 2024
Acceptance Date July 1, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Bay, K. E., & Uzun, G. (2024). FDM Yöntemi ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi. İmalat Teknolojileri Ve Uygulamaları, 5(2), 75-88. https://doi.org/10.52795/mateca.1488266
AMA Bay KE, Uzun G. FDM Yöntemi ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi. MATECA. August 2024;5(2):75-88. doi:10.52795/mateca.1488266
Chicago Bay, Kürşad Ertuğrul, and Gültekin Uzun. “FDM Yöntemi Ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi”. İmalat Teknolojileri Ve Uygulamaları 5, no. 2 (August 2024): 75-88. https://doi.org/10.52795/mateca.1488266.
EndNote Bay KE, Uzun G (August 1, 2024) FDM Yöntemi ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi. İmalat Teknolojileri ve Uygulamaları 5 2 75–88.
IEEE K. E. Bay and G. Uzun, “FDM Yöntemi ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi”, MATECA, vol. 5, no. 2, pp. 75–88, 2024, doi: 10.52795/mateca.1488266.
ISNAD Bay, Kürşad Ertuğrul - Uzun, Gültekin. “FDM Yöntemi Ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi”. İmalat Teknolojileri ve Uygulamaları 5/2 (August 2024), 75-88. https://doi.org/10.52795/mateca.1488266.
JAMA Bay KE, Uzun G. FDM Yöntemi ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi. MATECA. 2024;5:75–88.
MLA Bay, Kürşad Ertuğrul and Gültekin Uzun. “FDM Yöntemi Ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi”. İmalat Teknolojileri Ve Uygulamaları, vol. 5, no. 2, 2024, pp. 75-88, doi:10.52795/mateca.1488266.
Vancouver Bay KE, Uzun G. FDM Yöntemi ile Üretilen Sandviç Yapılarda Üretim Parametrelerinin Mekanik Performans Üzerindeki Etkisi. MATECA. 2024;5(2):75-88.