Research Article
BibTex RIS Cite

On the Study of Pantograph Differential Equations with Proportional Fractional Derivative

Year 2023, , 97 - 103, 30.06.2023
https://doi.org/10.36753/mathenot.1057344

Abstract

This manuscript is devoted to investigate the existence, uniqueness and stability of pantograph equations with Hilfer generalized proportional fractional derivative. The concerned results are obtained using standard theorems.

Supporting Institution

-

Project Number

-

References

  • [1] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear. Sci. Numer. Simulat., 44 (2017) 460–481.
  • [2] S. Abbas, M. Benchohra, S. Sivasundaram, Dynamics and Ulam stability for Hilfer type fractional di?erential equations, Nonlinear Stud., 4 (2016) 627–637.
  • [3] I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Di?er. Equ. 2020:329.
  • [4] K. Balachandran, S. Kiruthika, J.J. Trujillo, Existence of solutions of Nonlinear fractional pantograph equations, Acta Math. Sci., 33B (2013) 1-9.
  • [5] K. M. Furati, M. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving HFD, Compur. Math. Appl., 64 (2012) 1616–1626.
  • [6] K. Guan, Q. Wang, X. He, Oscillation of a pantograph di?erential equation with impulsive perturbations, Appl. Math. Comput. , 219 (2012) 3147-3153.
  • [7] R. Hilfer, Application of fractional Calculus in Physics, World Scientific, Singapore, 1999.
  • [8] A. Iserles, On the generalized pantograph functional di?erential equation, Eur. J. Appl. Math., 4 (1993) 1-38.
  • [9] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Di?erential Equations, in: Mathematics Studies, vol.204, Elsevier, 2006.
  • [10] R. Kamocki, C. Obcznnski, On fractional Cauchy-type problems containing Hilfer derivative, Electron. J. Qual. Theory. Di?er. Equ., 50 (2016) 1–12.
  • [11] I. Podlubny, Fractional Di?erential Equations: Mathematics in Science and Engineering, vol. 198, Acad. Press, 1999.
  • [12] D. R. Smart, Fixed Point Theorems, Cambridge University Press, 1980.
  • [13] J.VanterlerdaC.Sousa, E.CapelasdeOliveira, Onthe?-Hilferfractionalderivative, Commun.Nonlinear. Sci. Numer. Simulat., 60 2018, 72-91.
  • [14] J. Vanterlerda C. Sousa, E. Capelas de Oliveira, On the Ulam-Hyers-Rassias satibility for nonlinear fractional di?erential equations using the ?-Hilfer operator, arXiv: 1711.07339, (2017).
  • [15] D. Vivek, K. Kanagarajan, S. Sivasundaram, Dynamics and stability of pantograph equationsvia Hilfer fractional derivative, Nonlinear Stud., 23 (2016) 685-698.
Year 2023, , 97 - 103, 30.06.2023
https://doi.org/10.36753/mathenot.1057344

Abstract

Project Number

-

References

  • [1] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear. Sci. Numer. Simulat., 44 (2017) 460–481.
  • [2] S. Abbas, M. Benchohra, S. Sivasundaram, Dynamics and Ulam stability for Hilfer type fractional di?erential equations, Nonlinear Stud., 4 (2016) 627–637.
  • [3] I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Di?er. Equ. 2020:329.
  • [4] K. Balachandran, S. Kiruthika, J.J. Trujillo, Existence of solutions of Nonlinear fractional pantograph equations, Acta Math. Sci., 33B (2013) 1-9.
  • [5] K. M. Furati, M. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving HFD, Compur. Math. Appl., 64 (2012) 1616–1626.
  • [6] K. Guan, Q. Wang, X. He, Oscillation of a pantograph di?erential equation with impulsive perturbations, Appl. Math. Comput. , 219 (2012) 3147-3153.
  • [7] R. Hilfer, Application of fractional Calculus in Physics, World Scientific, Singapore, 1999.
  • [8] A. Iserles, On the generalized pantograph functional di?erential equation, Eur. J. Appl. Math., 4 (1993) 1-38.
  • [9] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Di?erential Equations, in: Mathematics Studies, vol.204, Elsevier, 2006.
  • [10] R. Kamocki, C. Obcznnski, On fractional Cauchy-type problems containing Hilfer derivative, Electron. J. Qual. Theory. Di?er. Equ., 50 (2016) 1–12.
  • [11] I. Podlubny, Fractional Di?erential Equations: Mathematics in Science and Engineering, vol. 198, Acad. Press, 1999.
  • [12] D. R. Smart, Fixed Point Theorems, Cambridge University Press, 1980.
  • [13] J.VanterlerdaC.Sousa, E.CapelasdeOliveira, Onthe?-Hilferfractionalderivative, Commun.Nonlinear. Sci. Numer. Simulat., 60 2018, 72-91.
  • [14] J. Vanterlerda C. Sousa, E. Capelas de Oliveira, On the Ulam-Hyers-Rassias satibility for nonlinear fractional di?erential equations using the ?-Hilfer operator, arXiv: 1711.07339, (2017).
  • [15] D. Vivek, K. Kanagarajan, S. Sivasundaram, Dynamics and stability of pantograph equationsvia Hilfer fractional derivative, Nonlinear Stud., 23 (2016) 685-698.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Harikrishnan Sugumaran

Dvivek Vivek

Elsayed Elsayed 0000-0003-0894-8472

Project Number -
Publication Date June 30, 2023
Submission Date January 13, 2022
Acceptance Date December 31, 2022
Published in Issue Year 2023

Cite

APA Sugumaran, H., Vivek, D., & Elsayed, E. (2023). On the Study of Pantograph Differential Equations with Proportional Fractional Derivative. Mathematical Sciences and Applications E-Notes, 11(2), 97-103. https://doi.org/10.36753/mathenot.1057344
AMA Sugumaran H, Vivek D, Elsayed E. On the Study of Pantograph Differential Equations with Proportional Fractional Derivative. Math. Sci. Appl. E-Notes. June 2023;11(2):97-103. doi:10.36753/mathenot.1057344
Chicago Sugumaran, Harikrishnan, Dvivek Vivek, and Elsayed Elsayed. “On the Study of Pantograph Differential Equations With Proportional Fractional Derivative”. Mathematical Sciences and Applications E-Notes 11, no. 2 (June 2023): 97-103. https://doi.org/10.36753/mathenot.1057344.
EndNote Sugumaran H, Vivek D, Elsayed E (June 1, 2023) On the Study of Pantograph Differential Equations with Proportional Fractional Derivative. Mathematical Sciences and Applications E-Notes 11 2 97–103.
IEEE H. Sugumaran, D. Vivek, and E. Elsayed, “On the Study of Pantograph Differential Equations with Proportional Fractional Derivative”, Math. Sci. Appl. E-Notes, vol. 11, no. 2, pp. 97–103, 2023, doi: 10.36753/mathenot.1057344.
ISNAD Sugumaran, Harikrishnan et al. “On the Study of Pantograph Differential Equations With Proportional Fractional Derivative”. Mathematical Sciences and Applications E-Notes 11/2 (June 2023), 97-103. https://doi.org/10.36753/mathenot.1057344.
JAMA Sugumaran H, Vivek D, Elsayed E. On the Study of Pantograph Differential Equations with Proportional Fractional Derivative. Math. Sci. Appl. E-Notes. 2023;11:97–103.
MLA Sugumaran, Harikrishnan et al. “On the Study of Pantograph Differential Equations With Proportional Fractional Derivative”. Mathematical Sciences and Applications E-Notes, vol. 11, no. 2, 2023, pp. 97-103, doi:10.36753/mathenot.1057344.
Vancouver Sugumaran H, Vivek D, Elsayed E. On the Study of Pantograph Differential Equations with Proportional Fractional Derivative. Math. Sci. Appl. E-Notes. 2023;11(2):97-103.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.