Research Article
BibTex RIS Cite
Year 2024, , 81 - 92, 14.04.2024
https://doi.org/10.36753/mathenot.1362335

Abstract

References

  • [1] Debnath, L., Bhatta, D.: Integral Transforms and Their Applications(3rd ed.). Chapman and Hall/CRC. 2014.
  • [2] Yürekli, O.: A Parseval-type theorem applied to certain integral transforms. IMA Journal of Applied Mathematics. 42 (3), 241-249 (1989).
  • [3] Yürekli, O.: A theorem on the generalized Stieltjes transform, Journal of Mathematical Analysis and Applications. 168(1), 63-71 (1992).
  • [4] Albayrak, D., Dernek, N.: Some relations for the generalized e Gn; e Pn integral transforms and Riemann-Liouville, Weyl integral operators. Gazi University Journal of Science. 36 (1), 362-381 (2023).
  • [5] Albayrak, D., Dernek, N.: On some generalized integral transforms and Parseval-Goldstein type relations. Hacettepe Journal of Mathematics and Statistics. 50 (2), 526-540 (2021).
  • [6] Karataş, H. B., Kumar, D., Uçar, F.: Some iteration and Parseval-Goldstein type identities with their applications. Advances in Mathematical Sciences and Applications. 29 (2), 563–574 (2020).
  • [7] Karataş, H. B., Albayrak, D., Uçar, F.: Some Parseval-Goldstein type identities with illustrative examples. Proceedings of the Institute of Mathematics and Mechanics. 49 (1), 60-68 (2023).
  • [8] Albayrak, D.: Theory and applications on a new generalized Laplace-type integral transform. Mathematical Methods in the Applied Sciences. 46 (4), 4363-4378 (2023).
  • [9] Yürekli, O., Sadek, I.: A Parseval Goldstein type theorem on the Widder potential and its applications. International Journal of Mathematics and Mathematical Sciences. 14, 160375, 517-524 (1991).
  • [10] Al-Musallam, F., Kiryakova, V., Tuan, V. K.: A multi-index Borel-Dzrbashjan transform. Rocky Mountain Journal of Mathematics. 32 (2), 409–428 (2002).
  • [11] Dzhrbashyan, M. M.: Integral Transforms and Representations of Functions in the Complex Domain. Nauka, Moscow. 1966.
  • [12] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. II. New York- Toronto-London. McGraw-Hill Book Company. Inc. 1954.
  • [13] Widder, D. V.: A transform related to the Poisson integral for a half-plane. Duke Mathematical Journal. 33 (2), 355–362 (1966).
  • [14] Glasser, M. L.: Some Bessel function integrals. Kyungpook Mathematical Journal. 13 (2), 171–174 (1973).
  • [15] Dernek, N., Kurt, V., ¸Sim¸sek, Y., Yürekli, O.: A generalization of the Widder potential transform and applications. Integral Transforms and Special Functions. 22 (6), 391-401 (2011).
  • [16] Oldham, K. B., Spanier, J., Myland, J.: An Atlas of Functions. Springer. 2010.
  • [17] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. I. New York- Toronto-London. McGraw-Hill Book Company. Inc. 1954.
  • [18] Ferreira, J., Salinas, S.: A gamma type distribution involving a confluent hypergeometric function of the second kind. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia. 33 (2), 169-175 (2010).

Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms

Year 2024, , 81 - 92, 14.04.2024
https://doi.org/10.36753/mathenot.1362335

Abstract

In this work, we establish some Parseval-Goldstein type identities and relations that include various new generalized integral transforms such as $\mathcal{L}_{\alpha,\mu}$-transform and generalized Stieltjes transform. In addition, we evaluated improper integrals of some fundamental and special functions using our results.

References

  • [1] Debnath, L., Bhatta, D.: Integral Transforms and Their Applications(3rd ed.). Chapman and Hall/CRC. 2014.
  • [2] Yürekli, O.: A Parseval-type theorem applied to certain integral transforms. IMA Journal of Applied Mathematics. 42 (3), 241-249 (1989).
  • [3] Yürekli, O.: A theorem on the generalized Stieltjes transform, Journal of Mathematical Analysis and Applications. 168(1), 63-71 (1992).
  • [4] Albayrak, D., Dernek, N.: Some relations for the generalized e Gn; e Pn integral transforms and Riemann-Liouville, Weyl integral operators. Gazi University Journal of Science. 36 (1), 362-381 (2023).
  • [5] Albayrak, D., Dernek, N.: On some generalized integral transforms and Parseval-Goldstein type relations. Hacettepe Journal of Mathematics and Statistics. 50 (2), 526-540 (2021).
  • [6] Karataş, H. B., Kumar, D., Uçar, F.: Some iteration and Parseval-Goldstein type identities with their applications. Advances in Mathematical Sciences and Applications. 29 (2), 563–574 (2020).
  • [7] Karataş, H. B., Albayrak, D., Uçar, F.: Some Parseval-Goldstein type identities with illustrative examples. Proceedings of the Institute of Mathematics and Mechanics. 49 (1), 60-68 (2023).
  • [8] Albayrak, D.: Theory and applications on a new generalized Laplace-type integral transform. Mathematical Methods in the Applied Sciences. 46 (4), 4363-4378 (2023).
  • [9] Yürekli, O., Sadek, I.: A Parseval Goldstein type theorem on the Widder potential and its applications. International Journal of Mathematics and Mathematical Sciences. 14, 160375, 517-524 (1991).
  • [10] Al-Musallam, F., Kiryakova, V., Tuan, V. K.: A multi-index Borel-Dzrbashjan transform. Rocky Mountain Journal of Mathematics. 32 (2), 409–428 (2002).
  • [11] Dzhrbashyan, M. M.: Integral Transforms and Representations of Functions in the Complex Domain. Nauka, Moscow. 1966.
  • [12] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. II. New York- Toronto-London. McGraw-Hill Book Company. Inc. 1954.
  • [13] Widder, D. V.: A transform related to the Poisson integral for a half-plane. Duke Mathematical Journal. 33 (2), 355–362 (1966).
  • [14] Glasser, M. L.: Some Bessel function integrals. Kyungpook Mathematical Journal. 13 (2), 171–174 (1973).
  • [15] Dernek, N., Kurt, V., ¸Sim¸sek, Y., Yürekli, O.: A generalization of the Widder potential transform and applications. Integral Transforms and Special Functions. 22 (6), 391-401 (2011).
  • [16] Oldham, K. B., Spanier, J., Myland, J.: An Atlas of Functions. Springer. 2010.
  • [17] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. I. New York- Toronto-London. McGraw-Hill Book Company. Inc. 1954.
  • [18] Ferreira, J., Salinas, S.: A gamma type distribution involving a confluent hypergeometric function of the second kind. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia. 33 (2), 169-175 (2010).
There are 18 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Durmuş Albayrak 0000-0002-3786-5900

Early Pub Date January 29, 2024
Publication Date April 14, 2024
Submission Date September 18, 2023
Acceptance Date January 24, 2024
Published in Issue Year 2024

Cite

APA Albayrak, D. (2024). Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms. Mathematical Sciences and Applications E-Notes, 12(2), 81-92. https://doi.org/10.36753/mathenot.1362335
AMA Albayrak D. Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms. Math. Sci. Appl. E-Notes. April 2024;12(2):81-92. doi:10.36753/mathenot.1362335
Chicago Albayrak, Durmuş. “Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms”. Mathematical Sciences and Applications E-Notes 12, no. 2 (April 2024): 81-92. https://doi.org/10.36753/mathenot.1362335.
EndNote Albayrak D (April 1, 2024) Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms. Mathematical Sciences and Applications E-Notes 12 2 81–92.
IEEE D. Albayrak, “Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms”, Math. Sci. Appl. E-Notes, vol. 12, no. 2, pp. 81–92, 2024, doi: 10.36753/mathenot.1362335.
ISNAD Albayrak, Durmuş. “Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms”. Mathematical Sciences and Applications E-Notes 12/2 (April 2024), 81-92. https://doi.org/10.36753/mathenot.1362335.
JAMA Albayrak D. Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms. Math. Sci. Appl. E-Notes. 2024;12:81–92.
MLA Albayrak, Durmuş. “Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 2, 2024, pp. 81-92, doi:10.36753/mathenot.1362335.
Vancouver Albayrak D. Some Parseval-Goldstein Type Theorems For Generalized Integral Transforms. Math. Sci. Appl. E-Notes. 2024;12(2):81-92.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.