Research Article
BibTex RIS Cite
Year 2017, , 1 - 8, 30.04.2017
https://doi.org/10.36753/mathenot.421468

Abstract

References

  • [1] Balakrishnan R., Space curves, anholonomy and nonlinearity. Prama J. Phys. 64 (2005), no. 4, 607-615.
  • [2] Benn I.M. and Tucker R.W., Wave mechanics and inertial guidance. Phys. Rev. D. 39 (1989), no. 6, 1594-1601.
  • [3] Berry M.V., Proc. Roy. Soc. London A. (1984), 392.
  • [4] Calin C. and Crasmareanu M., Slant Curves and Particles in three- dimensional Warped Products and their Lancret invariants. Bulletin of the Australian Mathematical Society. 88 (2013), no. 1, 128-142.
  • [5] Crasmareanu M. and Frigioiu C., Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves. Int. Journal of Geometric Methods in Modern Physics. 12 (2015), 1550111.
  • [6] Dandolof R., Berry’s phase and Fermi-Walker parallel transport. Phys. Lett. A. 139 (1989), no. (1,2), 19-20. [7] Fermi E. Atti Accad. Naz., Lincei Cl. Sci. Fiz. Mat. Nat. 31 (1922), 184-306.
  • [8] Hawking S.W. and Ellis G.F.R., The Large Scale Structure of Spacetime. Cambridge University Press., 1973.
  • [9] Karakus F. and Yayli Y., On the Fermi-Walker derivative and non-rotating frame. Int. Journal of Geometric Methods in Modern Physics. 2012, no. (9,8), 1250066.
  • [10] Karakus F. and Yayli Y., The Fermi- Walker derivative in Lie groups. Int. Journal of Geometric Methods in Modern Physics. 10 (2013), no. 7, Article ID 1320011:10p.
  • [11] Karakus F. and Yayli Y., The Fermi derivative in the hypersurfaces. Int. Journal of Geometric Methods in Modern Physics. 12 (2015), no. 1, Article ID 1550002:12p.
  • [12] Scofield P.D., Curves of Constant Precession. The American Mathematical Monthly 102 (1995), no. 6, 531-537.
  • [13] Uzunoglu B., Gok I. and Yayli Y., A new approach on curves of constant precession. Applied Mathematics and Computation. 275 (2016), 317–323.

Normal Fermi- Walker Derivative

Year 2017, , 1 - 8, 30.04.2017
https://doi.org/10.36753/mathenot.421468

Abstract

 In this paper, first, we defined normal Fermi-Walker derivative and applied for adapted frame. Normal
Fermi-Walker parallelism, normal non-rotating frame and Darboux vector of normal Fermi-Walker
derivative by using normal Fermi-Walker derivative are given for adapted frame. Being conditions of
normal Fermi-Walker derivative and normal non-rotating frame are researched throughout curve for
Frenet frame and Adapted frame. It is shown that vector field which take part in [13] is normal FermiWalker
parallel in accordance with the normal Fermi-Walker derivative along the general helix. Also, we
show that the Frenet frame is normal non-rotating frame in accordance with the normal Fermi-Walker
derivative. Afterwards, we testified that the adapted frame is normal non-rotating frame throughout the
general helix.

References

  • [1] Balakrishnan R., Space curves, anholonomy and nonlinearity. Prama J. Phys. 64 (2005), no. 4, 607-615.
  • [2] Benn I.M. and Tucker R.W., Wave mechanics and inertial guidance. Phys. Rev. D. 39 (1989), no. 6, 1594-1601.
  • [3] Berry M.V., Proc. Roy. Soc. London A. (1984), 392.
  • [4] Calin C. and Crasmareanu M., Slant Curves and Particles in three- dimensional Warped Products and their Lancret invariants. Bulletin of the Australian Mathematical Society. 88 (2013), no. 1, 128-142.
  • [5] Crasmareanu M. and Frigioiu C., Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves. Int. Journal of Geometric Methods in Modern Physics. 12 (2015), 1550111.
  • [6] Dandolof R., Berry’s phase and Fermi-Walker parallel transport. Phys. Lett. A. 139 (1989), no. (1,2), 19-20. [7] Fermi E. Atti Accad. Naz., Lincei Cl. Sci. Fiz. Mat. Nat. 31 (1922), 184-306.
  • [8] Hawking S.W. and Ellis G.F.R., The Large Scale Structure of Spacetime. Cambridge University Press., 1973.
  • [9] Karakus F. and Yayli Y., On the Fermi-Walker derivative and non-rotating frame. Int. Journal of Geometric Methods in Modern Physics. 2012, no. (9,8), 1250066.
  • [10] Karakus F. and Yayli Y., The Fermi- Walker derivative in Lie groups. Int. Journal of Geometric Methods in Modern Physics. 10 (2013), no. 7, Article ID 1320011:10p.
  • [11] Karakus F. and Yayli Y., The Fermi derivative in the hypersurfaces. Int. Journal of Geometric Methods in Modern Physics. 12 (2015), no. 1, Article ID 1550002:12p.
  • [12] Scofield P.D., Curves of Constant Precession. The American Mathematical Monthly 102 (1995), no. 6, 531-537.
  • [13] Uzunoglu B., Gok I. and Yayli Y., A new approach on curves of constant precession. Applied Mathematics and Computation. 275 (2016), 317–323.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Özgür Keskin This is me

Yusuf Yaylı

Publication Date April 30, 2017
Submission Date October 18, 2016
Published in Issue Year 2017

Cite

APA Keskin, Ö., & Yaylı, Y. (2017). Normal Fermi- Walker Derivative. Mathematical Sciences and Applications E-Notes, 5(1), 1-8. https://doi.org/10.36753/mathenot.421468
AMA Keskin Ö, Yaylı Y. Normal Fermi- Walker Derivative. Math. Sci. Appl. E-Notes. April 2017;5(1):1-8. doi:10.36753/mathenot.421468
Chicago Keskin, Özgür, and Yusuf Yaylı. “Normal Fermi- Walker Derivative”. Mathematical Sciences and Applications E-Notes 5, no. 1 (April 2017): 1-8. https://doi.org/10.36753/mathenot.421468.
EndNote Keskin Ö, Yaylı Y (April 1, 2017) Normal Fermi- Walker Derivative. Mathematical Sciences and Applications E-Notes 5 1 1–8.
IEEE Ö. Keskin and Y. Yaylı, “Normal Fermi- Walker Derivative”, Math. Sci. Appl. E-Notes, vol. 5, no. 1, pp. 1–8, 2017, doi: 10.36753/mathenot.421468.
ISNAD Keskin, Özgür - Yaylı, Yusuf. “Normal Fermi- Walker Derivative”. Mathematical Sciences and Applications E-Notes 5/1 (April 2017), 1-8. https://doi.org/10.36753/mathenot.421468.
JAMA Keskin Ö, Yaylı Y. Normal Fermi- Walker Derivative. Math. Sci. Appl. E-Notes. 2017;5:1–8.
MLA Keskin, Özgür and Yusuf Yaylı. “Normal Fermi- Walker Derivative”. Mathematical Sciences and Applications E-Notes, vol. 5, no. 1, 2017, pp. 1-8, doi:10.36753/mathenot.421468.
Vancouver Keskin Ö, Yaylı Y. Normal Fermi- Walker Derivative. Math. Sci. Appl. E-Notes. 2017;5(1):1-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.