[1] Cengiz, N., Salimov, A.A., Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142, no.
2-3, 309-319 (2003).
[2] Cherif, A.M., and Djaa, M., Geometry of energy and bienergy variations between Riemannian manifolds,
Kyungpook Mathematical Journal, 55(2015), pp 715-730.
[3] Djaa M., Mohamed Cherif A., Zegga K. And Ouakkas S., On the Generalized of Harmonic and Bi-harmonic
Maps, international electronic journal of geometry, 5 no. 1(2012), 90-100.
[4] Djaa M., Gancarzewicz J., The geometry of tangent bundles of order r, Boletin Academia , Galega de Ciencias
,Espagne, 4 (1985), 147–165.
[5] Djaa, M., Djaa, N.E.H. and R. Nasri, Natural Metrics on T2M and Harmonicity, International Electronic Journal
of Geometry Volume 6 No.1(2013), 100-111.
[6] Djaa N.E.H., Ouakkas S. , M. Djaa, Harmonic sections on the tangent bundle of order two. Annales Mathematicae
et Informaticae 38( 2011) pp 15-25. 1.
[7] Djaa N.E.H., Boulal A. and Zagane A., Generalized warped product manifolds and Biharmonic maps, Acta
Math. Univ. Comenianae; Vol. LXXXI, 2 (2012), 283-298.
[8] Djaa, N.E.H. and Djaa, M., Generalized Warped Product Manifold and Critical Riemannian Metric, Acta
Mathematica Academiae Paedagogicae Nyiregyhaziensis Vol 28 (2012), 197-206.
[9] Elhendi, H., Terbeche, M. And Djaa, M., Tangent Bundle Of Order Two And Biharmonicity. Acta Math. Univ.
Comenianae . Vol. 83 2 (2014). pp. 165-179.
[10] GEZER, A., On the tangent bundle with deformed Sasaki metric, Int. Electron. J. Geom. Volume 6 No. 2 (2013),
19-31.
[11] Gudmundsson, S. and Kappos, E.: On the Geometry of the Tangent Bundles, Expo. Math. 20, no.1(2002), 1-41.
[12] Salimov, A., Gezer, A., Akbulut, K., Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math. 6, no.2,
135-147 (2009).
[13] Salimov, A., Gezer, A., On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Annals of
Mathematics, Series B May 2011, Volume 32, Issue 3, pp 369-386.
[14] Salimov A. and Agca F. ,Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of
Mathematics; 8(2) (2011). 243-255.
[15] Salimov A. A. and Kazimova S., Geodesics of the Cheeger-Gromoll Metric, Turk J Math 33 (2009) , 99 - 105.
[16] Yano K., Ishihara S. Tangent and Cotangent Bundles, Marcel Dekker. INC. New York 1973.
[1] Cengiz, N., Salimov, A.A., Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142, no.
2-3, 309-319 (2003).
[2] Cherif, A.M., and Djaa, M., Geometry of energy and bienergy variations between Riemannian manifolds,
Kyungpook Mathematical Journal, 55(2015), pp 715-730.
[3] Djaa M., Mohamed Cherif A., Zegga K. And Ouakkas S., On the Generalized of Harmonic and Bi-harmonic
Maps, international electronic journal of geometry, 5 no. 1(2012), 90-100.
[4] Djaa M., Gancarzewicz J., The geometry of tangent bundles of order r, Boletin Academia , Galega de Ciencias
,Espagne, 4 (1985), 147–165.
[5] Djaa, M., Djaa, N.E.H. and R. Nasri, Natural Metrics on T2M and Harmonicity, International Electronic Journal
of Geometry Volume 6 No.1(2013), 100-111.
[6] Djaa N.E.H., Ouakkas S. , M. Djaa, Harmonic sections on the tangent bundle of order two. Annales Mathematicae
et Informaticae 38( 2011) pp 15-25. 1.
[7] Djaa N.E.H., Boulal A. and Zagane A., Generalized warped product manifolds and Biharmonic maps, Acta
Math. Univ. Comenianae; Vol. LXXXI, 2 (2012), 283-298.
[8] Djaa, N.E.H. and Djaa, M., Generalized Warped Product Manifold and Critical Riemannian Metric, Acta
Mathematica Academiae Paedagogicae Nyiregyhaziensis Vol 28 (2012), 197-206.
[9] Elhendi, H., Terbeche, M. And Djaa, M., Tangent Bundle Of Order Two And Biharmonicity. Acta Math. Univ.
Comenianae . Vol. 83 2 (2014). pp. 165-179.
[10] GEZER, A., On the tangent bundle with deformed Sasaki metric, Int. Electron. J. Geom. Volume 6 No. 2 (2013),
19-31.
[11] Gudmundsson, S. and Kappos, E.: On the Geometry of the Tangent Bundles, Expo. Math. 20, no.1(2002), 1-41.
[12] Salimov, A., Gezer, A., Akbulut, K., Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math. 6, no.2,
135-147 (2009).
[13] Salimov, A., Gezer, A., On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Annals of
Mathematics, Series B May 2011, Volume 32, Issue 3, pp 369-386.
[14] Salimov A. and Agca F. ,Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of
Mathematics; 8(2) (2011). 243-255.
[15] Salimov A. A. and Kazimova S., Geodesics of the Cheeger-Gromoll Metric, Turk J Math 33 (2009) , 99 - 105.
[16] Yano K., Ishihara S. Tangent and Cotangent Bundles, Marcel Dekker. INC. New York 1973.
Zagane, A., & Djaa, M. (2017). On Geodesics of Warped Sasaki Metric. Mathematical Sciences and Applications E-Notes, 5(1), 85-92. https://doi.org/10.36753/mathenot.421709
AMA
Zagane A, Djaa M. On Geodesics of Warped Sasaki Metric. Math. Sci. Appl. E-Notes. April 2017;5(1):85-92. doi:10.36753/mathenot.421709
Chicago
Zagane, Abderrahim, and Mustapha Djaa. “On Geodesics of Warped Sasaki Metric”. Mathematical Sciences and Applications E-Notes 5, no. 1 (April 2017): 85-92. https://doi.org/10.36753/mathenot.421709.
EndNote
Zagane A, Djaa M (April 1, 2017) On Geodesics of Warped Sasaki Metric. Mathematical Sciences and Applications E-Notes 5 1 85–92.
IEEE
A. Zagane and M. Djaa, “On Geodesics of Warped Sasaki Metric”, Math. Sci. Appl. E-Notes, vol. 5, no. 1, pp. 85–92, 2017, doi: 10.36753/mathenot.421709.