Research Article
BibTex RIS Cite
Year 2017, , 60 - 68, 30.10.2017
https://doi.org/10.36753/mathenot.421737

Abstract

References

  • [1] Camillo V., Nicholson W.K. Quasi-morphic rings, J. Algebra Applications 2007; 6: 789 -799. [2] Chen J. L. and Zhou Y., Glasg. Math. J. 2005, 47 (1): 139-148.
  • [3] Ehrlich G., Units and one-sided units in regular rings, Trans. AMS 1976; 216: 81-90.
  • [4] Goodearl K.R. Von Neumann Regular Rings, Monographs and Studies in Mathematics, Pitman, Boston: Mass.London, 1979.
  • [5] Herbera D. Bezeout and semiheriditary power series ring, Journal of Algebra 2003; 270: 150-168.
  • [6] Huang Q., Chen J. Morphic properties of extension rings, Algebra Colloquim 2010; 270:337-344.
  • [7] Lee T.K., Zhou Y. Morphic rings and unit regular rings, J. Pure. Appl. Algebra 2007; 210: 501-510.
  • [8] Lee T.K., Zhou Y. A theorem on unit regular rings, Canadian Math. Bull 2010; 53: 321-326.
  • [9] Lee T.K., Zhou Y. Regularity and Morphic property of rings, J. Algebra 2009; 322: 1072-1085.
  • [10] Nicholson W. K., Sa´nchez Campo´s E., Rings with the dual of the isomorphism theorem, J. Algebra 2004; 271: 391-406.

Extensions of Morphic Quasi-morphic and Centrally Morphic Rings

Year 2017, , 60 - 68, 30.10.2017
https://doi.org/10.36753/mathenot.421737

Abstract


References

  • [1] Camillo V., Nicholson W.K. Quasi-morphic rings, J. Algebra Applications 2007; 6: 789 -799. [2] Chen J. L. and Zhou Y., Glasg. Math. J. 2005, 47 (1): 139-148.
  • [3] Ehrlich G., Units and one-sided units in regular rings, Trans. AMS 1976; 216: 81-90.
  • [4] Goodearl K.R. Von Neumann Regular Rings, Monographs and Studies in Mathematics, Pitman, Boston: Mass.London, 1979.
  • [5] Herbera D. Bezeout and semiheriditary power series ring, Journal of Algebra 2003; 270: 150-168.
  • [6] Huang Q., Chen J. Morphic properties of extension rings, Algebra Colloquim 2010; 270:337-344.
  • [7] Lee T.K., Zhou Y. Morphic rings and unit regular rings, J. Pure. Appl. Algebra 2007; 210: 501-510.
  • [8] Lee T.K., Zhou Y. A theorem on unit regular rings, Canadian Math. Bull 2010; 53: 321-326.
  • [9] Lee T.K., Zhou Y. Regularity and Morphic property of rings, J. Algebra 2009; 322: 1072-1085.
  • [10] Nicholson W. K., Sa´nchez Campo´s E., Rings with the dual of the isomorphism theorem, J. Algebra 2004; 271: 391-406.
There are 9 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Serap Şahinkaya

Publication Date October 30, 2017
Submission Date May 12, 2017
Published in Issue Year 2017

Cite

APA Şahinkaya, S. (2017). Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Mathematical Sciences and Applications E-Notes, 5(2), 60-68. https://doi.org/10.36753/mathenot.421737
AMA Şahinkaya S. Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Math. Sci. Appl. E-Notes. October 2017;5(2):60-68. doi:10.36753/mathenot.421737
Chicago Şahinkaya, Serap. “Extensions of Morphic Quasi-Morphic and Centrally Morphic Rings”. Mathematical Sciences and Applications E-Notes 5, no. 2 (October 2017): 60-68. https://doi.org/10.36753/mathenot.421737.
EndNote Şahinkaya S (October 1, 2017) Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Mathematical Sciences and Applications E-Notes 5 2 60–68.
IEEE S. Şahinkaya, “Extensions of Morphic Quasi-morphic and Centrally Morphic Rings”, Math. Sci. Appl. E-Notes, vol. 5, no. 2, pp. 60–68, 2017, doi: 10.36753/mathenot.421737.
ISNAD Şahinkaya, Serap. “Extensions of Morphic Quasi-Morphic and Centrally Morphic Rings”. Mathematical Sciences and Applications E-Notes 5/2 (October 2017), 60-68. https://doi.org/10.36753/mathenot.421737.
JAMA Şahinkaya S. Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Math. Sci. Appl. E-Notes. 2017;5:60–68.
MLA Şahinkaya, Serap. “Extensions of Morphic Quasi-Morphic and Centrally Morphic Rings”. Mathematical Sciences and Applications E-Notes, vol. 5, no. 2, 2017, pp. 60-68, doi:10.36753/mathenot.421737.
Vancouver Şahinkaya S. Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Math. Sci. Appl. E-Notes. 2017;5(2):60-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.