Research Article
BibTex RIS Cite
Year 2018, , 99 - 105, 27.04.2018
https://doi.org/10.36753/mathenot.421776

Abstract

References

  • [1] Berberler, Z.N. and Berberler, M.E., Independence saturation in complementary product types of graphs, CBU J. of Sci., 13 (2017), no. 2, 325-331.
  • [2] Bomze, I., Budinich, M., Pardalos, P. and Pelillo, M.,“The maximum clique problem,” in Du, D. and Pardalos, P. (eds), Handbook of Combinatorial Optimization, Supplement Volume A, Kluwer Academic Press, 1999.
  • [3] Bondy, J. A. and Murty, U. S. R., Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
  • [4] Buckley, F. and Harary, F., Distance in Graphs, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1990.
  • [5] Chartrand, G. and Lesniak, L., Graphs and Digraphs:, Fourth Edition, Chapman and Hall, London, 2005.
  • [6] Haynes, T. W., Henning, M. A., Slater, P. J. and Van Der Merwe, L. C., The complementary product of two graphs, Bull. Instit. Combin. Appl., 51 (2007), 21-30.
  • [7] Korshunov, A. D., Coefficient of internal stability of graphs, Cybernetics, 10(1974), no. 1, 19-33.
  • [8] Meena, N., Subramanian, A. and Swaminathan, V., Strong efficient domination and strong independent saturation number of graphs, International Journal of Mathematics and Soft Computing, 3 (2013), no. 2, 41-48.
  • [9] Sampathkumar, E. and Pushpa Latha, L., Strong weak domination and domination balance in a graph, Discrete Math., 161 (1996), 235-242.
  • [10] West, D. B., Introduction to Graph Theory, Prentice Hall, NJ, 2001.

Strong Independent Saturation in Complementary Prisms

Year 2018, , 99 - 105, 27.04.2018
https://doi.org/10.36753/mathenot.421776

Abstract


References

  • [1] Berberler, Z.N. and Berberler, M.E., Independence saturation in complementary product types of graphs, CBU J. of Sci., 13 (2017), no. 2, 325-331.
  • [2] Bomze, I., Budinich, M., Pardalos, P. and Pelillo, M.,“The maximum clique problem,” in Du, D. and Pardalos, P. (eds), Handbook of Combinatorial Optimization, Supplement Volume A, Kluwer Academic Press, 1999.
  • [3] Bondy, J. A. and Murty, U. S. R., Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
  • [4] Buckley, F. and Harary, F., Distance in Graphs, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1990.
  • [5] Chartrand, G. and Lesniak, L., Graphs and Digraphs:, Fourth Edition, Chapman and Hall, London, 2005.
  • [6] Haynes, T. W., Henning, M. A., Slater, P. J. and Van Der Merwe, L. C., The complementary product of two graphs, Bull. Instit. Combin. Appl., 51 (2007), 21-30.
  • [7] Korshunov, A. D., Coefficient of internal stability of graphs, Cybernetics, 10(1974), no. 1, 19-33.
  • [8] Meena, N., Subramanian, A. and Swaminathan, V., Strong efficient domination and strong independent saturation number of graphs, International Journal of Mathematics and Soft Computing, 3 (2013), no. 2, 41-48.
  • [9] Sampathkumar, E. and Pushpa Latha, L., Strong weak domination and domination balance in a graph, Discrete Math., 161 (1996), 235-242.
  • [10] West, D. B., Introduction to Graph Theory, Prentice Hall, NJ, 2001.
There are 10 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Zeynep Nihan Berberler

Publication Date April 27, 2018
Submission Date January 15, 2018
Published in Issue Year 2018

Cite

APA Berberler, Z. N. (2018). Strong Independent Saturation in Complementary Prisms. Mathematical Sciences and Applications E-Notes, 6(1), 99-105. https://doi.org/10.36753/mathenot.421776
AMA Berberler ZN. Strong Independent Saturation in Complementary Prisms. Math. Sci. Appl. E-Notes. April 2018;6(1):99-105. doi:10.36753/mathenot.421776
Chicago Berberler, Zeynep Nihan. “Strong Independent Saturation in Complementary Prisms”. Mathematical Sciences and Applications E-Notes 6, no. 1 (April 2018): 99-105. https://doi.org/10.36753/mathenot.421776.
EndNote Berberler ZN (April 1, 2018) Strong Independent Saturation in Complementary Prisms. Mathematical Sciences and Applications E-Notes 6 1 99–105.
IEEE Z. N. Berberler, “Strong Independent Saturation in Complementary Prisms”, Math. Sci. Appl. E-Notes, vol. 6, no. 1, pp. 99–105, 2018, doi: 10.36753/mathenot.421776.
ISNAD Berberler, Zeynep Nihan. “Strong Independent Saturation in Complementary Prisms”. Mathematical Sciences and Applications E-Notes 6/1 (April 2018), 99-105. https://doi.org/10.36753/mathenot.421776.
JAMA Berberler ZN. Strong Independent Saturation in Complementary Prisms. Math. Sci. Appl. E-Notes. 2018;6:99–105.
MLA Berberler, Zeynep Nihan. “Strong Independent Saturation in Complementary Prisms”. Mathematical Sciences and Applications E-Notes, vol. 6, no. 1, 2018, pp. 99-105, doi:10.36753/mathenot.421776.
Vancouver Berberler ZN. Strong Independent Saturation in Complementary Prisms. Math. Sci. Appl. E-Notes. 2018;6(1):99-105.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.