Research Article
BibTex RIS Cite
Year 2021, , 9 - 21, 01.03.2021
https://doi.org/10.36753/mathenot.763854

Abstract

References

  • [1] Almali, S.E., Gadjiev, A.D.: On approximation properties of certain multidimensional nonlinear integrals. J. Nonlinear Sci. Appl. 9 (5) 3090–3097 (2016).
  • [2] Bardaro, C., Mantellini, I.: Voronovskaya-type estimates for Mellin convolution operators. Results Math. 50 (1-2) 1–16 (2007).
  • [3] Bardaro, C., Mantellini, I.: Bivariate Mellin convolution operators: Quantitative approximation theorems. Math. Comput. Modelling 53 (5-6) 1197–1207 (2011).
  • [4] Butzer, P.L., Nessel, R.J.: Fourier analysis and approximation Vol. 1: One-dimensional theory. Pure and Applied Mathematics Vol. 40. Academic Press: New York-London (1971).
  • [5] Fatou, P.: Séries trigonométriques et séries de Taylor (French). Acta Math. 30 (1) 335–400 (1906).
  • [6] Gadžiev, A.D.: The asymptotic value of the approximation of derivatives by the derivatives of a family of linear operators (Russian). Izv. Akad. Nauk Azerba˘ıdžan. SSR Ser. Fiz.-Mat. Tehn. Nauk 6 15–24 (1962).
  • [7] Gadžiev, A.D.: On the convergence of integral operators (Russian). Akad. Nauk Azerba˘ıdžan. SSR Dokl. 19 (12) 3–7 (1963).
  • [8] Gadžiev, A.D.: On the speed of convergence of a class of singular integrals (Russian). Izv. Akad. Nauk Azerbaıdžan. SSR Ser. Fiz.-Mat. Tehn. Nauk 6, 27–31 (1963).
  • [9] Gadžiev, A.D.: The order of convergence of singular integrals which depend on two parameters (Russian). In: Special problems of functional analysis and their applications to the theory of differential equations and the theory of functions (Russian), 40-44 (1968).
  • [10] Karsli, H., Ibikli, E.: Approximation properties of convolution type singular integral operators depending on two parameters and of their derivatives in L1(a; b). In: Proceedings of the 16th International Conference of the Jangjeon Mathematical Society, 66–76, Jangjeon Math. Soc.: Hapcheon (2005).
  • [11] Karsli, H.: Approximation properties of singular integrals depending on two parameters and their derivatives (Turkish). PhD Thesis, Ankara University, Ankara, 75 pp. (2006).
  • [12] Karsli, H.: Convergence of the derivatives of nonlinear singular integral operators. J. Math. Anal. Approx. Theory 2 (1) 26–34 (2007).
  • [13] Matsuoka, Y.: Asymptotic formula for Vallée Poussin’s singular integrals. Sci. Rep. Kagoshima Univ. 9, 25–34 (1960).
  • [14] Saks, S.: Theory of the integral. Monografie Matematyczne,Warszawa (1937).
  • [15] Siudut, S.: On the convergence of double singular integrals. Comment. Math. Prace Mat. 28 (1) 143–146 (1988).
  • [16] Siudut, S.: On the Fatou type convergence of abstract singular integrals. Comment. Math. Prace Mat. 30 (1) 171–176 (1990).
  • [17] Spivak, M.D.: Calculus. (3rd ed.), Publish or Perish, Incorporated: Houston-Texas (1994).
  • [18] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton Univ. Press: Princeton-New Jersey (1970).
  • [19] Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton Univ. Press: Princeton-New Jersey (1971).
  • [20] Taberski, R.: Singular integrals depending on two parameters. Prace Mat. 7, 173–179 (1962).
  • [21] Taberski, R.: On double integrals and Fourier series. Ann. Polon. Math. 15, 97–115 (1964).
  • [22] Uysal, G., Yilmaz, M.M., Ibikli, E.: Approximation by radial type multidimensional singular integral operators. Palest. J. Math. 5 (2) 61–70 (2016).
  • [23] Yilmaz, B., Aral, A., Tunca, G.B.: Weighted approximation properties of generalized Picard operators. J. Comput. Anal. Appl. 13 (3) 499–513 (2011).
  • [24] Žornickaja, L.V.: The derivatives of some singular integrals (Russian). Izv. Vysš. Uˇcebn. Zaved. Matematika 29 (4) 62–72 (1962).

On Convergence of Partial Derivatives of Multidimensional Convolution Operators

Year 2021, , 9 - 21, 01.03.2021
https://doi.org/10.36753/mathenot.763854

Abstract

In this paper, we prove some results on convergence properties of higher order partial derivatives of multidimensional convolution-type singular integral operators being applied to the class of functions which are integrable in the sense of Lebesgue.

References

  • [1] Almali, S.E., Gadjiev, A.D.: On approximation properties of certain multidimensional nonlinear integrals. J. Nonlinear Sci. Appl. 9 (5) 3090–3097 (2016).
  • [2] Bardaro, C., Mantellini, I.: Voronovskaya-type estimates for Mellin convolution operators. Results Math. 50 (1-2) 1–16 (2007).
  • [3] Bardaro, C., Mantellini, I.: Bivariate Mellin convolution operators: Quantitative approximation theorems. Math. Comput. Modelling 53 (5-6) 1197–1207 (2011).
  • [4] Butzer, P.L., Nessel, R.J.: Fourier analysis and approximation Vol. 1: One-dimensional theory. Pure and Applied Mathematics Vol. 40. Academic Press: New York-London (1971).
  • [5] Fatou, P.: Séries trigonométriques et séries de Taylor (French). Acta Math. 30 (1) 335–400 (1906).
  • [6] Gadžiev, A.D.: The asymptotic value of the approximation of derivatives by the derivatives of a family of linear operators (Russian). Izv. Akad. Nauk Azerba˘ıdžan. SSR Ser. Fiz.-Mat. Tehn. Nauk 6 15–24 (1962).
  • [7] Gadžiev, A.D.: On the convergence of integral operators (Russian). Akad. Nauk Azerba˘ıdžan. SSR Dokl. 19 (12) 3–7 (1963).
  • [8] Gadžiev, A.D.: On the speed of convergence of a class of singular integrals (Russian). Izv. Akad. Nauk Azerbaıdžan. SSR Ser. Fiz.-Mat. Tehn. Nauk 6, 27–31 (1963).
  • [9] Gadžiev, A.D.: The order of convergence of singular integrals which depend on two parameters (Russian). In: Special problems of functional analysis and their applications to the theory of differential equations and the theory of functions (Russian), 40-44 (1968).
  • [10] Karsli, H., Ibikli, E.: Approximation properties of convolution type singular integral operators depending on two parameters and of their derivatives in L1(a; b). In: Proceedings of the 16th International Conference of the Jangjeon Mathematical Society, 66–76, Jangjeon Math. Soc.: Hapcheon (2005).
  • [11] Karsli, H.: Approximation properties of singular integrals depending on two parameters and their derivatives (Turkish). PhD Thesis, Ankara University, Ankara, 75 pp. (2006).
  • [12] Karsli, H.: Convergence of the derivatives of nonlinear singular integral operators. J. Math. Anal. Approx. Theory 2 (1) 26–34 (2007).
  • [13] Matsuoka, Y.: Asymptotic formula for Vallée Poussin’s singular integrals. Sci. Rep. Kagoshima Univ. 9, 25–34 (1960).
  • [14] Saks, S.: Theory of the integral. Monografie Matematyczne,Warszawa (1937).
  • [15] Siudut, S.: On the convergence of double singular integrals. Comment. Math. Prace Mat. 28 (1) 143–146 (1988).
  • [16] Siudut, S.: On the Fatou type convergence of abstract singular integrals. Comment. Math. Prace Mat. 30 (1) 171–176 (1990).
  • [17] Spivak, M.D.: Calculus. (3rd ed.), Publish or Perish, Incorporated: Houston-Texas (1994).
  • [18] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton Univ. Press: Princeton-New Jersey (1970).
  • [19] Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton Univ. Press: Princeton-New Jersey (1971).
  • [20] Taberski, R.: Singular integrals depending on two parameters. Prace Mat. 7, 173–179 (1962).
  • [21] Taberski, R.: On double integrals and Fourier series. Ann. Polon. Math. 15, 97–115 (1964).
  • [22] Uysal, G., Yilmaz, M.M., Ibikli, E.: Approximation by radial type multidimensional singular integral operators. Palest. J. Math. 5 (2) 61–70 (2016).
  • [23] Yilmaz, B., Aral, A., Tunca, G.B.: Weighted approximation properties of generalized Picard operators. J. Comput. Anal. Appl. 13 (3) 499–513 (2011).
  • [24] Žornickaja, L.V.: The derivatives of some singular integrals (Russian). Izv. Vysš. Uˇcebn. Zaved. Matematika 29 (4) 62–72 (1962).
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Gumrah Uysal 0000-0001-7747-1706

Başar Yılmaz 0000-0003-3937-992X

Publication Date March 1, 2021
Submission Date July 3, 2020
Acceptance Date December 4, 2020
Published in Issue Year 2021

Cite

APA Uysal, G., & Yılmaz, B. (2021). On Convergence of Partial Derivatives of Multidimensional Convolution Operators. Mathematical Sciences and Applications E-Notes, 9(1), 9-21. https://doi.org/10.36753/mathenot.763854
AMA Uysal G, Yılmaz B. On Convergence of Partial Derivatives of Multidimensional Convolution Operators. Math. Sci. Appl. E-Notes. March 2021;9(1):9-21. doi:10.36753/mathenot.763854
Chicago Uysal, Gumrah, and Başar Yılmaz. “On Convergence of Partial Derivatives of Multidimensional Convolution Operators”. Mathematical Sciences and Applications E-Notes 9, no. 1 (March 2021): 9-21. https://doi.org/10.36753/mathenot.763854.
EndNote Uysal G, Yılmaz B (March 1, 2021) On Convergence of Partial Derivatives of Multidimensional Convolution Operators. Mathematical Sciences and Applications E-Notes 9 1 9–21.
IEEE G. Uysal and B. Yılmaz, “On Convergence of Partial Derivatives of Multidimensional Convolution Operators”, Math. Sci. Appl. E-Notes, vol. 9, no. 1, pp. 9–21, 2021, doi: 10.36753/mathenot.763854.
ISNAD Uysal, Gumrah - Yılmaz, Başar. “On Convergence of Partial Derivatives of Multidimensional Convolution Operators”. Mathematical Sciences and Applications E-Notes 9/1 (March 2021), 9-21. https://doi.org/10.36753/mathenot.763854.
JAMA Uysal G, Yılmaz B. On Convergence of Partial Derivatives of Multidimensional Convolution Operators. Math. Sci. Appl. E-Notes. 2021;9:9–21.
MLA Uysal, Gumrah and Başar Yılmaz. “On Convergence of Partial Derivatives of Multidimensional Convolution Operators”. Mathematical Sciences and Applications E-Notes, vol. 9, no. 1, 2021, pp. 9-21, doi:10.36753/mathenot.763854.
Vancouver Uysal G, Yılmaz B. On Convergence of Partial Derivatives of Multidimensional Convolution Operators. Math. Sci. Appl. E-Notes. 2021;9(1):9-21.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.