Research Article
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 2, 45 - 50, 30.10.2017
https://doi.org/10.36753/mathenot.421735

Abstract

References

  • [1] Bercovici, H. and Li Wing Suet, Inequalities for eigenvalues of sums in a von Neumann algebra. In Recent Advances in Operator theory and Related topics (Szeged, 1999), pp. 113-126, Oper. Theory Adv. Appl., 127, Birkhauser, Basel, 2001.
  • [2] Daleckii, Yu L. and Krein, M.G. Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, R. I. 1974.
  • [3] Foth, P. Eigenvalues of sums of pseudo-hermitian matrices, Electronic Journal of Linear Algebra, 20 (2010) 115-125. [4] Gil’, M.I. Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830, SpringerVerlag, Berlin, 2003.
  • [5] Gil’, M.I. On stability of linear Barbashin type integro-differential equations, Mathematical Problems in Engineering, vol. 2015, Article ID 962565, (2015), 5 pages.
  • [6] Gil’, M.I. Stability of sums of operators, Ann. Univ. Ferrara, 62, (2016) 61-70.
  • [7] Gil’, M.I. A bound for the Hilbert-Schmidt norm of generalized commutators of nonself-adjoint operators, Operators and Matrices, 11, no. 1 (2017) , 115-123.
  • [8] Helmke, U. and Rosenthal, J. Eigenvalue inequalities and Schubert calculus, Math. Nachr. 171 (1995), 207-225.
  • [9] Horn, A. Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241.
  • [10] Lidskii, B.V. Spectral polyhedron of the sum of two Hermitian matrices, Funct. Anal. Appl. 16 (1982), 139-140.
  • [11] Miranda, H. Diagonals and eigenvalues of sums of Hermitian matrices. Extreme cases. Proyecciones 22, no. 2, (2003) 127-134.
  • [12] Peacock, M.J.M., Collings I.B. and Honig, M.L. Eigenvalue distributions of sums and products of large random matrices via incremental matrix expansions, IEEE Trans. on Information Theory, 54, no. 5, (2008) 2123-2137.
  • [13] Thompson, R.C. and Freede, L. On the eigenvalues of a sum of Hermitian matrices, Linear Algebra Appl. 4 (1971), 369-376.

Exponentials of Sums of Operators in a Banach Space

Year 2017, Volume: 5 Issue: 2, 45 - 50, 30.10.2017
https://doi.org/10.36753/mathenot.421735

Abstract


References

  • [1] Bercovici, H. and Li Wing Suet, Inequalities for eigenvalues of sums in a von Neumann algebra. In Recent Advances in Operator theory and Related topics (Szeged, 1999), pp. 113-126, Oper. Theory Adv. Appl., 127, Birkhauser, Basel, 2001.
  • [2] Daleckii, Yu L. and Krein, M.G. Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, R. I. 1974.
  • [3] Foth, P. Eigenvalues of sums of pseudo-hermitian matrices, Electronic Journal of Linear Algebra, 20 (2010) 115-125. [4] Gil’, M.I. Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830, SpringerVerlag, Berlin, 2003.
  • [5] Gil’, M.I. On stability of linear Barbashin type integro-differential equations, Mathematical Problems in Engineering, vol. 2015, Article ID 962565, (2015), 5 pages.
  • [6] Gil’, M.I. Stability of sums of operators, Ann. Univ. Ferrara, 62, (2016) 61-70.
  • [7] Gil’, M.I. A bound for the Hilbert-Schmidt norm of generalized commutators of nonself-adjoint operators, Operators and Matrices, 11, no. 1 (2017) , 115-123.
  • [8] Helmke, U. and Rosenthal, J. Eigenvalue inequalities and Schubert calculus, Math. Nachr. 171 (1995), 207-225.
  • [9] Horn, A. Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241.
  • [10] Lidskii, B.V. Spectral polyhedron of the sum of two Hermitian matrices, Funct. Anal. Appl. 16 (1982), 139-140.
  • [11] Miranda, H. Diagonals and eigenvalues of sums of Hermitian matrices. Extreme cases. Proyecciones 22, no. 2, (2003) 127-134.
  • [12] Peacock, M.J.M., Collings I.B. and Honig, M.L. Eigenvalue distributions of sums and products of large random matrices via incremental matrix expansions, IEEE Trans. on Information Theory, 54, no. 5, (2008) 2123-2137.
  • [13] Thompson, R.C. and Freede, L. On the eigenvalues of a sum of Hermitian matrices, Linear Algebra Appl. 4 (1971), 369-376.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Michael Gil’ 0000-0002-6404-9618

Publication Date October 30, 2017
Submission Date April 10, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Gil’, M. (2017). Exponentials of Sums of Operators in a Banach Space. Mathematical Sciences and Applications E-Notes, 5(2), 45-50. https://doi.org/10.36753/mathenot.421735
AMA Gil’ M. Exponentials of Sums of Operators in a Banach Space. Math. Sci. Appl. E-Notes. October 2017;5(2):45-50. doi:10.36753/mathenot.421735
Chicago Gil’, Michael. “Exponentials of Sums of Operators in a Banach Space”. Mathematical Sciences and Applications E-Notes 5, no. 2 (October 2017): 45-50. https://doi.org/10.36753/mathenot.421735.
EndNote Gil’ M (October 1, 2017) Exponentials of Sums of Operators in a Banach Space. Mathematical Sciences and Applications E-Notes 5 2 45–50.
IEEE M. Gil’, “Exponentials of Sums of Operators in a Banach Space”, Math. Sci. Appl. E-Notes, vol. 5, no. 2, pp. 45–50, 2017, doi: 10.36753/mathenot.421735.
ISNAD Gil’, Michael. “Exponentials of Sums of Operators in a Banach Space”. Mathematical Sciences and Applications E-Notes 5/2 (October 2017), 45-50. https://doi.org/10.36753/mathenot.421735.
JAMA Gil’ M. Exponentials of Sums of Operators in a Banach Space. Math. Sci. Appl. E-Notes. 2017;5:45–50.
MLA Gil’, Michael. “Exponentials of Sums of Operators in a Banach Space”. Mathematical Sciences and Applications E-Notes, vol. 5, no. 2, 2017, pp. 45-50, doi:10.36753/mathenot.421735.
Vancouver Gil’ M. Exponentials of Sums of Operators in a Banach Space. Math. Sci. Appl. E-Notes. 2017;5(2):45-50.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.