Research Article
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 2, 60 - 68, 30.10.2017
https://doi.org/10.36753/mathenot.421737

Abstract

References

  • [1] Camillo V., Nicholson W.K. Quasi-morphic rings, J. Algebra Applications 2007; 6: 789 -799. [2] Chen J. L. and Zhou Y., Glasg. Math. J. 2005, 47 (1): 139-148.
  • [3] Ehrlich G., Units and one-sided units in regular rings, Trans. AMS 1976; 216: 81-90.
  • [4] Goodearl K.R. Von Neumann Regular Rings, Monographs and Studies in Mathematics, Pitman, Boston: Mass.London, 1979.
  • [5] Herbera D. Bezeout and semiheriditary power series ring, Journal of Algebra 2003; 270: 150-168.
  • [6] Huang Q., Chen J. Morphic properties of extension rings, Algebra Colloquim 2010; 270:337-344.
  • [7] Lee T.K., Zhou Y. Morphic rings and unit regular rings, J. Pure. Appl. Algebra 2007; 210: 501-510.
  • [8] Lee T.K., Zhou Y. A theorem on unit regular rings, Canadian Math. Bull 2010; 53: 321-326.
  • [9] Lee T.K., Zhou Y. Regularity and Morphic property of rings, J. Algebra 2009; 322: 1072-1085.
  • [10] Nicholson W. K., Sa´nchez Campo´s E., Rings with the dual of the isomorphism theorem, J. Algebra 2004; 271: 391-406.

Extensions of Morphic Quasi-morphic and Centrally Morphic Rings

Year 2017, Volume: 5 Issue: 2, 60 - 68, 30.10.2017
https://doi.org/10.36753/mathenot.421737

Abstract


References

  • [1] Camillo V., Nicholson W.K. Quasi-morphic rings, J. Algebra Applications 2007; 6: 789 -799. [2] Chen J. L. and Zhou Y., Glasg. Math. J. 2005, 47 (1): 139-148.
  • [3] Ehrlich G., Units and one-sided units in regular rings, Trans. AMS 1976; 216: 81-90.
  • [4] Goodearl K.R. Von Neumann Regular Rings, Monographs and Studies in Mathematics, Pitman, Boston: Mass.London, 1979.
  • [5] Herbera D. Bezeout and semiheriditary power series ring, Journal of Algebra 2003; 270: 150-168.
  • [6] Huang Q., Chen J. Morphic properties of extension rings, Algebra Colloquim 2010; 270:337-344.
  • [7] Lee T.K., Zhou Y. Morphic rings and unit regular rings, J. Pure. Appl. Algebra 2007; 210: 501-510.
  • [8] Lee T.K., Zhou Y. A theorem on unit regular rings, Canadian Math. Bull 2010; 53: 321-326.
  • [9] Lee T.K., Zhou Y. Regularity and Morphic property of rings, J. Algebra 2009; 322: 1072-1085.
  • [10] Nicholson W. K., Sa´nchez Campo´s E., Rings with the dual of the isomorphism theorem, J. Algebra 2004; 271: 391-406.
There are 9 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Serap Şahinkaya

Publication Date October 30, 2017
Submission Date May 12, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Şahinkaya, S. (2017). Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Mathematical Sciences and Applications E-Notes, 5(2), 60-68. https://doi.org/10.36753/mathenot.421737
AMA Şahinkaya S. Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Math. Sci. Appl. E-Notes. October 2017;5(2):60-68. doi:10.36753/mathenot.421737
Chicago Şahinkaya, Serap. “Extensions of Morphic Quasi-Morphic and Centrally Morphic Rings”. Mathematical Sciences and Applications E-Notes 5, no. 2 (October 2017): 60-68. https://doi.org/10.36753/mathenot.421737.
EndNote Şahinkaya S (October 1, 2017) Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Mathematical Sciences and Applications E-Notes 5 2 60–68.
IEEE S. Şahinkaya, “Extensions of Morphic Quasi-morphic and Centrally Morphic Rings”, Math. Sci. Appl. E-Notes, vol. 5, no. 2, pp. 60–68, 2017, doi: 10.36753/mathenot.421737.
ISNAD Şahinkaya, Serap. “Extensions of Morphic Quasi-Morphic and Centrally Morphic Rings”. Mathematical Sciences and Applications E-Notes 5/2 (October 2017), 60-68. https://doi.org/10.36753/mathenot.421737.
JAMA Şahinkaya S. Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Math. Sci. Appl. E-Notes. 2017;5:60–68.
MLA Şahinkaya, Serap. “Extensions of Morphic Quasi-Morphic and Centrally Morphic Rings”. Mathematical Sciences and Applications E-Notes, vol. 5, no. 2, 2017, pp. 60-68, doi:10.36753/mathenot.421737.
Vancouver Şahinkaya S. Extensions of Morphic Quasi-morphic and Centrally Morphic Rings. Math. Sci. Appl. E-Notes. 2017;5(2):60-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.