Research Article
BibTex RIS Cite

Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means

Year 2024, Volume: 12 Issue: 4, 196 - 206
https://doi.org/10.36753/mathenot.1471156

Abstract

The main purpose in this study is to investigate some topological and algebraic properties of the absolutely double series spaces $\left\vert C_{1,1}\right\vert _{k}$ defined by combining the first order Cesaro means with the concept of absolute summability for $k\geq 1$. Beside this, we determine the $\alpha -$dual of the space $\left\vert C_{1,1}\right\vert _{1}$ and the $\beta \left( bp\right) -$ and $\gamma -$duals of the spaces $% \left\vert C_{1,1}\right\vert _{k}$ for $k\geq 1.$ Finally, we characterize some new four-dimensional matrix classes $\left( \left\vert C_{1,1}\right\vert _{k},\upsilon \right) ,$ $\left( \left\vert C_{1,1}\right\vert _{1},\upsilon \right) $, $\left( \left\vert C_{1,1}\right\vert _{1},\mathcal{L}_{k}\right) ,$ $\left( \left\vert C_{1,1}\right\vert _{k},\mathcal{L}_{u}\right) ,$ $\left( \mathcal{L} _{u},\left\vert C_{1,1}\right\vert _{k}\right) $ and $\left( \mathcal{L} _{k},\left\vert C_{1,1}\right\vert _{1}\right) $, where $\upsilon \in \left\{ \mathcal{M}_{u},\mathcal{C}_{bp}\right\} $ for $1\leq k<\infty $. Hence, some important results concerned on Ces\`{a}ro matrix summation methods have been extended to double sequences.

References

  • [1] Bromwich, T. J.:An Introduction to the Theory of Infinite Series. Macmillan, New York, NY, USA, (1965).
  • [2] Demiriz, S., Duyar, O.:Domain of difference matrix of order one in some spaces of double sequences. Gulf Journal of Mathematics. 3(3), 85–100 (2015).
  • [3] Demiriz, S., Duyar, O.:Domain of the generalized double Cesàro matrix in some paranormed spaces of double sequences. Tbilisi Mathematical Journal. 10(2), 43-56 (2017).
  • [4] Demiriz, S., Erdem, S.:Domain of Euler-totient matrix operator in the space Lp. Korean Journal of Mathematics. 28(2), 361-378 (2020).
  • [5] Demiriz, S., Erdem, S.:Domain of binomial matrix in some spaces of double sequences. Punjab University Journal of Mathematics. 52(11), 65-79 (2020).
  • [6] Erdem, S., Demiriz, S.:A study on strongly almost convergent and strongly almost null binomial double sequence spaces. Fundamental Journal of Mathematics and Applications. 4(4), 271-279 (2021).
  • [7] Erdem, S., Demiriz, S.:A new RH-regular matrix derived by Jordan’s function and its domains on some double sequence spaces. Journal of Function Spaces. 2021, Article ID 5594751, 9 pages, (2021).
  • [8] Erdem, S., Demiriz, S.:q−Cesàro double sequence space ˜ Lq derived by q−analog.Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica. 22, 111-126 (2023).
  • [9] Móricz, F.:Extensions of the spaces c and c0 from single to double sequences. Acta Mathematica Hungarica. 57(1-2), 129–136 (1991).
  • [10] Móricz, F., Rhoades, B. E.:Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society. 104(2), 283–294 (1988).
  • [11] Mursaleen, M.:Almost strongly regular matrices and a core theorem for double sequences. Journal of Mathematical Analysis and Applications. 293(2), 523–531 (2004).
  • [12] Mursaleen, M., Ba¸sar, F.:Domain of Cesàro mean of order one in some spaces of double sequences. Studia Scientiarum Mathematicarum Hungarica. 51, 335-356 (2014).
  • [13] Hazar Güleç, G. C.:Compact matrix operators on absolute Cesàro spaces. Numerical Functional Analysis and Optimization. 41(1), 1-15 (2020).
  • [14] Hazar Güleç, G. C.:Characterization of some classes of compact and matrix operators on the sequence spaces of Cesàro means. Operators and Matrices. 13(3), 809-822 (2019).
  • [15] Hazar Güleç, G. C., Sarigöl, M. A.:Matrix mappings and norms on the absolute Cesàro and weighted spaces. Quaestiones Mathematicae. 43(1), 117-130 (2020).
  • [16] Sarıgöl, M. A.:On equivalence of absolute double weighted mean methods. Quaestiones Mathematicae. 44(6), 755-764 (2021).
  • [17] Başar, F., Sever, Y.:The space Lk of double sequences. Mathematical Journal of Okayama University. 51, 149–157 (2009).
  • [18] Zeltser, M.:On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica. 95(3), 225-242 (2002).
  • [19] Hardy, G. H.:On the convergence of certain multiple series. Proceedings of the Cambridge Philosophical Society. 19, 86–95 (1917).
  • [20] Rhoades, B. E.:Absolute comparison theorems for double weighted mean and double Cesàro means. Mathematica Slovaca. 48, 285-291 (1998).
  • [21] Boos, J.:Classical and Modern Methods in Summability. Oxford University Press, New York, (2000).
  • [22] Yeşilkayagil, M., Ba¸sar, F.:On the domain of Riesz mean in the space L∗ k. Filomat. 31(4), 925-940 (2017).
  • [23] Sarıgöl, M. A.:Four dimensional matrix mappings on double summable spaces. Filomat. 37(4), 1277-1290 (2023).
Year 2024, Volume: 12 Issue: 4, 196 - 206
https://doi.org/10.36753/mathenot.1471156

Abstract

References

  • [1] Bromwich, T. J.:An Introduction to the Theory of Infinite Series. Macmillan, New York, NY, USA, (1965).
  • [2] Demiriz, S., Duyar, O.:Domain of difference matrix of order one in some spaces of double sequences. Gulf Journal of Mathematics. 3(3), 85–100 (2015).
  • [3] Demiriz, S., Duyar, O.:Domain of the generalized double Cesàro matrix in some paranormed spaces of double sequences. Tbilisi Mathematical Journal. 10(2), 43-56 (2017).
  • [4] Demiriz, S., Erdem, S.:Domain of Euler-totient matrix operator in the space Lp. Korean Journal of Mathematics. 28(2), 361-378 (2020).
  • [5] Demiriz, S., Erdem, S.:Domain of binomial matrix in some spaces of double sequences. Punjab University Journal of Mathematics. 52(11), 65-79 (2020).
  • [6] Erdem, S., Demiriz, S.:A study on strongly almost convergent and strongly almost null binomial double sequence spaces. Fundamental Journal of Mathematics and Applications. 4(4), 271-279 (2021).
  • [7] Erdem, S., Demiriz, S.:A new RH-regular matrix derived by Jordan’s function and its domains on some double sequence spaces. Journal of Function Spaces. 2021, Article ID 5594751, 9 pages, (2021).
  • [8] Erdem, S., Demiriz, S.:q−Cesàro double sequence space ˜ Lq derived by q−analog.Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica. 22, 111-126 (2023).
  • [9] Móricz, F.:Extensions of the spaces c and c0 from single to double sequences. Acta Mathematica Hungarica. 57(1-2), 129–136 (1991).
  • [10] Móricz, F., Rhoades, B. E.:Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society. 104(2), 283–294 (1988).
  • [11] Mursaleen, M.:Almost strongly regular matrices and a core theorem for double sequences. Journal of Mathematical Analysis and Applications. 293(2), 523–531 (2004).
  • [12] Mursaleen, M., Ba¸sar, F.:Domain of Cesàro mean of order one in some spaces of double sequences. Studia Scientiarum Mathematicarum Hungarica. 51, 335-356 (2014).
  • [13] Hazar Güleç, G. C.:Compact matrix operators on absolute Cesàro spaces. Numerical Functional Analysis and Optimization. 41(1), 1-15 (2020).
  • [14] Hazar Güleç, G. C.:Characterization of some classes of compact and matrix operators on the sequence spaces of Cesàro means. Operators and Matrices. 13(3), 809-822 (2019).
  • [15] Hazar Güleç, G. C., Sarigöl, M. A.:Matrix mappings and norms on the absolute Cesàro and weighted spaces. Quaestiones Mathematicae. 43(1), 117-130 (2020).
  • [16] Sarıgöl, M. A.:On equivalence of absolute double weighted mean methods. Quaestiones Mathematicae. 44(6), 755-764 (2021).
  • [17] Başar, F., Sever, Y.:The space Lk of double sequences. Mathematical Journal of Okayama University. 51, 149–157 (2009).
  • [18] Zeltser, M.:On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica. 95(3), 225-242 (2002).
  • [19] Hardy, G. H.:On the convergence of certain multiple series. Proceedings of the Cambridge Philosophical Society. 19, 86–95 (1917).
  • [20] Rhoades, B. E.:Absolute comparison theorems for double weighted mean and double Cesàro means. Mathematica Slovaca. 48, 285-291 (1998).
  • [21] Boos, J.:Classical and Modern Methods in Summability. Oxford University Press, New York, (2000).
  • [22] Yeşilkayagil, M., Ba¸sar, F.:On the domain of Riesz mean in the space L∗ k. Filomat. 31(4), 925-940 (2017).
  • [23] Sarıgöl, M. A.:Four dimensional matrix mappings on double summable spaces. Filomat. 37(4), 1277-1290 (2023).
There are 23 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Okan Bodur 0000-0002-6403-4627

Canan Hazar Gulec 0000-0002-8825-5555

Early Pub Date July 31, 2024
Publication Date
Submission Date April 19, 2024
Acceptance Date July 31, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Bodur, O., & Gulec, C. H. (2024). Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Mathematical Sciences and Applications E-Notes, 12(4), 196-206. https://doi.org/10.36753/mathenot.1471156
AMA Bodur O, Gulec CH. Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Math. Sci. Appl. E-Notes. July 2024;12(4):196-206. doi:10.36753/mathenot.1471156
Chicago Bodur, Okan, and Canan Hazar Gulec. “Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means”. Mathematical Sciences and Applications E-Notes 12, no. 4 (July 2024): 196-206. https://doi.org/10.36753/mathenot.1471156.
EndNote Bodur O, Gulec CH (July 1, 2024) Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Mathematical Sciences and Applications E-Notes 12 4 196–206.
IEEE O. Bodur and C. H. Gulec, “Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means”, Math. Sci. Appl. E-Notes, vol. 12, no. 4, pp. 196–206, 2024, doi: 10.36753/mathenot.1471156.
ISNAD Bodur, Okan - Gulec, Canan Hazar. “Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means”. Mathematical Sciences and Applications E-Notes 12/4 (July 2024), 196-206. https://doi.org/10.36753/mathenot.1471156.
JAMA Bodur O, Gulec CH. Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Math. Sci. Appl. E-Notes. 2024;12:196–206.
MLA Bodur, Okan and Canan Hazar Gulec. “Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 4, 2024, pp. 196-0, doi:10.36753/mathenot.1471156.
Vancouver Bodur O, Gulec CH. Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesaro Means. Math. Sci. Appl. E-Notes. 2024;12(4):196-20.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.