Parametric Optimization of a Responsive Façade System for Daylight Performance
Year 2022,
Volume: 7 Issue: 1, 72 - 81, 08.07.2022
Ecenur Kızılörenli
,
Ayça Tokuç
Abstract
The effective use of daylight is a critical design input that increases spatial qualities, sustainability, and energy efficiency targets in buildings. The emerging kinetic architecture concept supports these goals. It also recommends the use of building elements that are suitable for the design of dynamically environment-responsive façades. This study aims to explore the potential of kinetic envelopes for the design of optimal daylight efficient façades. The methodology is based on computational models of kinetic façade patterns applied to a generic building, which are further optimized to reveal the most efficient design. The façade features a modular pattern based on triangles, which, by simple rotation around the vertical axis, provides both daylight control and visual comfort. The results of a parametric analysis of the panel configurations based on daylight metrics, show that the proposed design helped achieving the most effective configuration for daylight savings.
Thanks
We thank the anonymous referees for their constructive and insightful comments. The article complies with national and international research and publication ethics. Ethics committee permission was not required for the study.
References
- Ahmed, M. M., Abel-Rahman, A. K., & Ali, A. H. H. (2015). Development of intelligent façade based on outdoor environment and indoor thermal comfort. Procedia Technology, 19, 742-749.
- Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: concept, applications, research questions. Energy Procedia, 91, 269-275.
- Banihashemi Namini, S. S., Shakouri, M. & Sadeghi, A. (2012). Analysis of Behaviour of Windows in terms of Saving Energy in Extreme Cold Weather Climes in Iran. International Journal of Engineering and Technology.
- Beltran, L., & Liu, D. I. (2020). Evaluation of Dynamic Daylight Metrics, Based on Weather, Location, Orientation and Daylight Availability.
- Çıldır, A. S., Köktürk, G. & Tokuç, A. (2020). Design approaches for retrofiting offices to reach nearly zero energy: A case study in the Mediterranean climate. Energy for Sustainable Development, 58, 167-181.
- ElBatran, R. M. & Ismaeel, W. S. (2021). Applying a parametric design approach for optimizing daylighting and visual comfort in office buildings. Ain Shams Engineering Journal.
- Fontoynont, M. (2014). Daylight performance of buildings. Routledge.
- Freewan, A. A. (2014). Impact of external shading devices on thermal and daylighting performance of offices in hot climate regions. Solar Energy, 102, 14-30.
- Hosseini, S. M., Mohammadi, M., Rosemann, A., Schröder, T. & Lichtenberg, J. (2019). A morphological approach for kinetic façade design process to improve visual and thermal comfort. Building and Environment, 153, 186-204.
- Hosseini, S. N., Hosseini, S. M. & HeiraniPour, M. (2020). The Role of Orosi’s Islamic Geometric Patterns in the Building Façade Design for Improving Occupants’ Daylight
Performance. Journal of Daylighting, 7(2), 201-221.
- Lakhdari, K., Sriti, L. & Painter, B. (2021). Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions.
Building and Environment, 204, 108173.
- Lee, J., Boubekri, M. & Liang, F. (2019). Impact of building design parameters on daylighting metrics using an analysis, prediction, and optimization approach based on
statistical learning technique. Sustainability, 11(5), 1474.
- LM, I. (2013). Approved method: IES spatial Daylight autonomy (sDA) and annual sunlight exposure (ASE). Illuminating Engineering Society. https://www. ies.
org/product/ies-spatial-daylight-autonomy-sda-and-annual-sunlight-exposure-ase.
- Manzan, M. & Clarich, A. (2017). FAST energy and daylight optimization of an office with fixed and movable shading devices. Building and Environment, 113, 175-184.
- Mardaljevic, J., Heschong, L. & Lee, E. (2009). Daylight metrics and energy savings. Lighting Research & Technology, 41(3), 261-283.
- Marzouk, M., ElSharkawy, M., Elsayed, P. & Eissa, A. (2020). Resolving deterioration of heritage building elements using an expert system. International Journal of Building
Pathology and Adaptation.
- Marzouk, M., ElSharkawy, M. & Mahmoud, A. (2021). Optimizing daylight utilization of flat skylights in heritage buildings. Journal of Advanced Research.
- Matin, N. H., Eydgahi, A. & Shyu, S. (2017, June). Comparative analysis of technologies used in responsive building facades. In 2017 ASEE Annual Conference & Exposition.
- Moloney, J. (2011). Designing kinetics for architectural façades: state change. Routledge.
- Orhon, A. V. & Altın, M. (2017). Mimari sürdürülebilirlik için bir değerlendirme aracı olarak benzetim. Tesisat Mühendisliği, 158, 5-13.
- Pauley, S. M. (2004). Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Medical hypotheses, 63(4), 588-596.
- Prieto, A., Knaack, U., Auer, T. & Klein, T. (2018). Passive cooling & climate responsive façade design: Exploring the limits of passive cooling strategies to improve the
performance of commercial buildings in warm climates. Energy and Buildings, 175, 30-47.
- Ragheb, A., El-Shimy, H. & Ragheb, G. (2016). Green architecture: A concept of sustainability. Procedia-Social and Behavioral Sciences, 216, 778-787.
- Shahbazi, Y., Heydari, M. & Haghparast, F. (2019). An early-stage design optimization for office buildings’ façade providing high-energy performance and daylight. Indoor
and Built Environment, 28(10), 1350-1367.
- Shen, H. & Tzempelikos, A. (2012). Daylighting and energy analysis of private offices with automated interior roller shades. Solar Energy, 86(2), 681-704.
- Selkowitz, S., Aschehoug, O. & Lee, E. S. (2003). Advanced Interactive Façades-Critical Elements for Future GreenBuildings? (No. LBNL-53876). Ernest Orlando Lawrence
Berkeley National Laboratory, Berkeley, CA (US).
- Tabadkani, A., Banihashemi, S. & Hosseini, M. R. (2018, August). Daylighting and visual comfort of oriental sun responsive skins: A parametric analysis. In Building simulation
(Vol. 11, No. 4, pp. 663-676). Tsinghua University Press.
- USGBC (2017). LEED v4 for Operations and Maintenance. U.S. Green Building Council. Available from: https://www.usgbc.org/resources/leed-v4-building-operations-and-
maintenance-current-version.
- Wagdy, A. & Fathy, F. (2015). A parametric approach for achieving optimum daylighting performance through solar screens in desert climates. Journal of Building
Engineering, 3, 155-170.
- Yi, Y. K. (2019). Building façade multi-objective optimization for daylight and aesthetical perception. Building and Environment, 156, 178-190.
- Yi, Y. K., Sharston, R. & Barakat, D. (2019). Auxetic structures and advanced daylight control systems. Journal of Façade Design and Engineering, 7(1), 63-74.
- Ziaee, N. & Vakilinezhad, R. (2022). Multi-objective optimization of daylight performance and thermal comfort in classrooms with light-shelves: Case studies in Tehran and
Sari, Iran. Energy and Buildings, 254, 111590.
Gün Işığı Performansı için Tepkisel Bir Cephe Sisteminin Parametrik Optimizasyonu
Year 2022,
Volume: 7 Issue: 1, 72 - 81, 08.07.2022
Ecenur Kızılörenli
,
Ayça Tokuç
Abstract
Gün ışığının etkin kullanımı, binalarda mekânsal nitelikleri, sürdürülebilirliği ve enerji verimliliği hedeflerini artıran kritik bir tasarım girdisidir. Ortaya çıkan kinetik mimari konsepti bu hedefleri desteklemektedir. Ayrıca dinamik olarak çevreye duyarlı cephelerin tasarımına uygun yapı elemanlarının kullanılmasını önerir. Bu çalışma, optimum gün ışığı verimli cephelerin tasarımı için kinetik cephe sistemlerinin potansiyelini araştırmayı amaçlamaktadır. Metodoloji, en verimli tasarımı ortaya çıkarmak için optimize edilmiş, çalışma kapsamında oluşturulmuş bir binaya uygulanan kinetik cephe modellerinin hesaplamalı modellerine dayanmaktadır. Cephe, dikey eksen etrafında basit bir dönüşle hem gün ışığı kontrolü hem de görsel konfor sağlayan üçgenlere dayalı modüler bir desene sahiptir. Gün ışığı ölçümlerine dayalı panel konfigürasyonlarının parametrik analizinin sonuçları, önerilen tasarımın gün ışığından yararlanma için en etkili konfigürasyonun elde edilmesine yardımcı olduğunu göstermektedir.
References
- Ahmed, M. M., Abel-Rahman, A. K., & Ali, A. H. H. (2015). Development of intelligent façade based on outdoor environment and indoor thermal comfort. Procedia Technology, 19, 742-749.
- Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: concept, applications, research questions. Energy Procedia, 91, 269-275.
- Banihashemi Namini, S. S., Shakouri, M. & Sadeghi, A. (2012). Analysis of Behaviour of Windows in terms of Saving Energy in Extreme Cold Weather Climes in Iran. International Journal of Engineering and Technology.
- Beltran, L., & Liu, D. I. (2020). Evaluation of Dynamic Daylight Metrics, Based on Weather, Location, Orientation and Daylight Availability.
- Çıldır, A. S., Köktürk, G. & Tokuç, A. (2020). Design approaches for retrofiting offices to reach nearly zero energy: A case study in the Mediterranean climate. Energy for Sustainable Development, 58, 167-181.
- ElBatran, R. M. & Ismaeel, W. S. (2021). Applying a parametric design approach for optimizing daylighting and visual comfort in office buildings. Ain Shams Engineering Journal.
- Fontoynont, M. (2014). Daylight performance of buildings. Routledge.
- Freewan, A. A. (2014). Impact of external shading devices on thermal and daylighting performance of offices in hot climate regions. Solar Energy, 102, 14-30.
- Hosseini, S. M., Mohammadi, M., Rosemann, A., Schröder, T. & Lichtenberg, J. (2019). A morphological approach for kinetic façade design process to improve visual and thermal comfort. Building and Environment, 153, 186-204.
- Hosseini, S. N., Hosseini, S. M. & HeiraniPour, M. (2020). The Role of Orosi’s Islamic Geometric Patterns in the Building Façade Design for Improving Occupants’ Daylight
Performance. Journal of Daylighting, 7(2), 201-221.
- Lakhdari, K., Sriti, L. & Painter, B. (2021). Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions.
Building and Environment, 204, 108173.
- Lee, J., Boubekri, M. & Liang, F. (2019). Impact of building design parameters on daylighting metrics using an analysis, prediction, and optimization approach based on
statistical learning technique. Sustainability, 11(5), 1474.
- LM, I. (2013). Approved method: IES spatial Daylight autonomy (sDA) and annual sunlight exposure (ASE). Illuminating Engineering Society. https://www. ies.
org/product/ies-spatial-daylight-autonomy-sda-and-annual-sunlight-exposure-ase.
- Manzan, M. & Clarich, A. (2017). FAST energy and daylight optimization of an office with fixed and movable shading devices. Building and Environment, 113, 175-184.
- Mardaljevic, J., Heschong, L. & Lee, E. (2009). Daylight metrics and energy savings. Lighting Research & Technology, 41(3), 261-283.
- Marzouk, M., ElSharkawy, M., Elsayed, P. & Eissa, A. (2020). Resolving deterioration of heritage building elements using an expert system. International Journal of Building
Pathology and Adaptation.
- Marzouk, M., ElSharkawy, M. & Mahmoud, A. (2021). Optimizing daylight utilization of flat skylights in heritage buildings. Journal of Advanced Research.
- Matin, N. H., Eydgahi, A. & Shyu, S. (2017, June). Comparative analysis of technologies used in responsive building facades. In 2017 ASEE Annual Conference & Exposition.
- Moloney, J. (2011). Designing kinetics for architectural façades: state change. Routledge.
- Orhon, A. V. & Altın, M. (2017). Mimari sürdürülebilirlik için bir değerlendirme aracı olarak benzetim. Tesisat Mühendisliği, 158, 5-13.
- Pauley, S. M. (2004). Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Medical hypotheses, 63(4), 588-596.
- Prieto, A., Knaack, U., Auer, T. & Klein, T. (2018). Passive cooling & climate responsive façade design: Exploring the limits of passive cooling strategies to improve the
performance of commercial buildings in warm climates. Energy and Buildings, 175, 30-47.
- Ragheb, A., El-Shimy, H. & Ragheb, G. (2016). Green architecture: A concept of sustainability. Procedia-Social and Behavioral Sciences, 216, 778-787.
- Shahbazi, Y., Heydari, M. & Haghparast, F. (2019). An early-stage design optimization for office buildings’ façade providing high-energy performance and daylight. Indoor
and Built Environment, 28(10), 1350-1367.
- Shen, H. & Tzempelikos, A. (2012). Daylighting and energy analysis of private offices with automated interior roller shades. Solar Energy, 86(2), 681-704.
- Selkowitz, S., Aschehoug, O. & Lee, E. S. (2003). Advanced Interactive Façades-Critical Elements for Future GreenBuildings? (No. LBNL-53876). Ernest Orlando Lawrence
Berkeley National Laboratory, Berkeley, CA (US).
- Tabadkani, A., Banihashemi, S. & Hosseini, M. R. (2018, August). Daylighting and visual comfort of oriental sun responsive skins: A parametric analysis. In Building simulation
(Vol. 11, No. 4, pp. 663-676). Tsinghua University Press.
- USGBC (2017). LEED v4 for Operations and Maintenance. U.S. Green Building Council. Available from: https://www.usgbc.org/resources/leed-v4-building-operations-and-
maintenance-current-version.
- Wagdy, A. & Fathy, F. (2015). A parametric approach for achieving optimum daylighting performance through solar screens in desert climates. Journal of Building
Engineering, 3, 155-170.
- Yi, Y. K. (2019). Building façade multi-objective optimization for daylight and aesthetical perception. Building and Environment, 156, 178-190.
- Yi, Y. K., Sharston, R. & Barakat, D. (2019). Auxetic structures and advanced daylight control systems. Journal of Façade Design and Engineering, 7(1), 63-74.
- Ziaee, N. & Vakilinezhad, R. (2022). Multi-objective optimization of daylight performance and thermal comfort in classrooms with light-shelves: Case studies in Tehran and
Sari, Iran. Energy and Buildings, 254, 111590.