Review
BibTex RIS Cite

Mimari Tasarım Karar Verme Süreçlerinde Yapay Zekâ Tabanlı Bulanık Mantık Sistemerinin Değerlendirilmesi

Year 2022, Volume: 7 Issue: 2, 878 - 899, 30.12.2022
https://doi.org/10.30785/mbud.1117910

Abstract

Etrafımızda gördüğümüz tüm yapılı çevre, bir tasarım ürünüdür. Bu noktadan hareketle, günümüzde, beklentilerin çeşitliliğine bağlı olarak, bilgi ve değer sistemlerinde yaşanan değişimlerin neticesinde yapılı çevrenin oluşturulması, giderek karmaşıklaşan bir tasarım sorunu haline gelmiştir. Mimarların geleneksel tasarım yaklaşımları kimi zaman bu tasarım sorunlarına çözüm bulmada yetersiz kalmakta, yeni tasarım yaklaşımlarına ihtiyaç duyulmaktadır. Bu sebeple, çalışmada mimari tasarım sürecinde, geleneksel düşünceye ek olarak; veri, belge, bilgi ve iletişim modelleri kullanılarak problemleri tanımlayacak ve karar verme sürecinin tamamlanmasına yardımcı olacak bulanık mantık tabanlı karar destek sistemleri incelenmiştir. Buna ek olarak bulanık mantık tabanlı karar destek sistemlerinin geleneksel yöntemler ile karşılaştırılması, avantajlarının ve dezavantajlarının tartışılması gerçekleştirilmiştir.

Thanks

Makalede ulusal ve uluslararası araştırma ve yayın etiğine uyulmuştur. Çalışmada etik kurul izni gerekmemiştir.

References

  • Altaş, İ. H. (1999). Bulanık mantık: bulanıklılık kavramı. Enerji, Elektrik, Elektromekanik-3e, 62, 80-85. Erişim adresi: https://dijitalbasin.com/Read/387/3e-elektrotech-dergisi
  • Arabacıoğlu, B. C. (2010). Using fuzzy inference system for architectural space analysis. Applied Soft Computing, 10(3), 926-937. doi: https://doi.org/10.1016/j.asoc.2009.10.011
  • Austin, S., Baldwin, A., Baizhan, Li, B. ve Waskett, P. (1999). Analytical design planning technique: A model of the detailed building design process. Journal of Design Studies, 20(3):279-296. doi: https://doi.org/10.1016/S0142-694X(98)00038-6
  • Ayağ, Z. ve Özdemir, R. G. (2009). A hybrid approach to concept selection through fuzzy analytic network process. Computers & Industrial Engineering, vol. 56, no. 1, pp. 368-379, doi: 10.1016/j.cie.2008.06.011
  • Ayağ, Z. (2005). A fuzzy AHP-based simulation approach to concept evaluation in a NPD environment. IIE Transactions, vol. 37, no. 9, pp. 827-842, doi:10.1080/07408170590969852.
  • Bansal, S., Biswas S. ve Singh S. (2017). Fuzzy decision approach for selection of most suitable construction method of green buildings. International Journal of Sustainable Built Environment 6, 122–132. doi: https://doi.org/10.1016/j.ijsbe.2017.02.005
  • Bayazıt, N. (2004). Endüstriyel Tasarımcılar İçin Tasarlama Kuramları ve Metotları, Birsen Yayınevi, İstanbul.
  • Behesti, M.R. ve Monroy, M. R. (1986). ADIS: Steps towards developing an architecture design ınformation system. Open House International, 11(2):38-45. Erişim adresi: https://www.emeraldgrouppublishing.com/journal/ohi
  • Beşikçi, E. B., Arslan, O., Turan, O. ve Ölçer, A. I. (2016). An artificial neural network based decision support system for energy efficient ship operations. Computers & Operations Research, 66, 393–401. Doi: https://doi.org/10.1016/j.cor.2015.04.004
  • Bozdemır, M. (2017). Yapay zekâ destekli bir tasarım işlem modelinin yapısı. International Journal of 3D Printing Technologies and Digital Industry, 1 (1), 1-8. Erişim adresi: https://dergipark.org.tr/en/pub/ij3dptdi/issue/33982/376173
  • Bozdemir, M. ve Mendi, F. (2013). Yapay zekâ destekli sistematik tasarım için bilgi yönetim sistem mimarisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 20 (2). Erişim adresi: https://dergipark.org.tr/en/pub/gazimmfd/issue/6664/88916
  • Chin, K.-S., Chan A. ve Yang J.-B. (2008). Development of a fuzzy FMEA based product design system, The International Journal of Advanced Manufacturing Technology, vol. 36, no. 7, pp. 633- 649, doi: 10.1007/s00170-006-0898-3
  • Chou, Y. C. ve Benjamin, C. O. (1992). An AI-based decision support system for naval ship design. Naval Engineers Journal, 104(3), 156–165. Doi: https://doi.org/10.1111/j.1559- 3584.1992.tb02235.x
  • Conrads, U. (1991). 20. Yüzyıl Mimarisinde Program ve Manifestolar, Şevki Vanlı Mimarlık Vakfı
  • Cooper, R. ve Press, M. (1995). The Design Agenda: A Guide to Successful Design Management, John Wiley&Sons Ltd., Chichester
  • Cross, N. (2000). Engineering Design Methods: Strategies for Product Design, 3. Edition, John Wiley & Sons, Chichester
  • Çekmiş, A. (2016). Fuzzy logic in architectural site planning design. Procedia Computer Science. 102– 182. doi: https://doi.org/10.1016/j.procs.2016.09.386
  • Ciftcioglu, O. (2003). Design enhancement by fuzzy logic in architecture. In The 12th IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 79-84. IEEE. Doi: 10.1109/FUZZ.2003.1209341
  • Çiftçioğlu Ö. ve Sarıyıldız S. (1998). Integrated building design decision support with fuzzy logic. Transactions on Information and Communications Technologies, vol 20. Doi: 10.2495/AI980031
  • Das, S., Swetapadma, A. ve Panigrahi, C. (2019). A study on the application of artificial intelligence techniques for predicting the heating and cooling loads of buildings. Journal of Green Building, 14(3), 115-128. Doi: https://doi.org/10.3992/1943-4618.14.3.115
  • Demirarslan, D. (2006). İç Mekân Tasarımına Giriş. Kocaeli: Kocaeli Üniversitesi Yayınları
  • Ding, X. ve Liu, B. (2007). The utility of linguistic rules in opinion mining. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 811-812). Doi: https://doi.org/10.1145/1277741.1277921
  • Ediz, F. E. (2006). Mimari Yapısal Öğelerin Tasarımı İçin Bir Yöntem, Doktora Tezi, İTÜ, Fen Bilimler Enstitüsü, İstanbul.
  • Esen, Ö. (1998). İşletme Yönetiminde Sistem Yaklaşımı, Alfa Basım Yayım Dağıtım, 56-60.
  • Fayek, A. (2020). Fuzzy logic and fuzzy hybrid techniques for construction engineering and management. J. Constr. Eng. Manage., 146(7): 04020064. doi: http://ascelibrary.org/doi/10.1061/(ASCE)CO.1943-7862.0001263.
  • Gencel, O., Özel, C., Köksal, F. ve Martinez, G. (2013). Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete. Materials Science (Medziagotyra). Vol. 19, No. 2. Doi: https://doi.org/10.5755/j01.ms.19.2.4439
  • Gero, J. S. (1975). Architectural optimization – A Review, Engineering Optimization, 1(3):189-199. Doi: https://doi.org/10.1080/03052157508960586
  • Goud, A., Mounika, K. ve Prakash, A. (2020). Fuzzy model development in green building material. selection. International Journal of Recent Technology and Engineering, Volume-9 Issue- 1. DOI:10.35940/ijrte. B2045.059120
  • Güneş, H., Orta, E. ve Akdaş, D. (2016). Akıllı ev sistemlerinde kullanılan yapay zekâ teknikleri için yapay veri üretici geliştirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18 (2), 1- 11. DOI: 10.25092/baunfbed.280151
  • Huang, H.-Z., Liu, Y., Li, Y., Xue, L. ve Wang, Z. (2013). New evaluation methods for conceptual design selection using computational intelligence techniques, Journal of Mechanical Science and Technology, vol. 27, no. 3, pp. 733-746, doi: 10.1007/s12206-013-0123-x.
  • Ireland, R. ve Liu, A. (2018). Application of data analytics for product design: Sentiment analysis of online product reviews. CIRP Journal of Manufacturing Science and Technology, 23, 128-144. Doi: https://doi.org/10.1016/j.cirpj.2018.06.003
  • İzgi, U. (1999). Mimarlıkta Süreç, Kavramlar-İlişkiler 1. baskı, Yapı-Endüstri Merkezi Yayınları, İstanbul, Cilt 201,199-200
  • Jaihar, J., Lingayat, N., Vijaybhai, P. S., Venkatesh, G. ve Upla, K. P. (2020). Smart home automation using machine learning algorithms. In 2020 International Conference for Emerging Technology (INCET) (pp. 1-4). IEEE. Doi: 10.1109/INCET49848.2020.9154007
  • Jin, J., Ji, P. ve Gu, R. (2016). Identifying comparative customer requirements from product online reviews for competitor analysis. Engineering Applications of Artificial Intelligence, 49, 61- 73. Doi: https://doi.org/10.1016/j.engappai.2015.12.005
  • Jones, J. C. (1980). Design Methods, John Wiley & Sons Ltd, New York
  • Kang, X. (2020). Aesthetic product design combining with rough set theory and fuzzy quality function deployment. Journal of Intelligent & Fuzzy Systems, vol. 39, pp. 1131-1146, doi: 10.3233/JIFS-192032
  • Kang, X., Yang, M., Wu, Y. ve Ni, B. (2018). Integrating evaluation grid method and fuzzy quality function deployment to new product development. Mathematical Problems in Engineering, 2018. Doi: https://doi.org/10.1155/2018/2451470
  • Kazanasmaz, Z. T. ve Tayfur, G. (2010). Hasta bakım ünitelerinin tasarım verimliliklerinin bulanık mantık modeli bağlamında değerlendirilmesi. Megaron. Erişim adresi: https://app.trdizin.gov.tr/makale/TVRFNU56QXdNQT09
  • Keen, P. G. W. (1978). Decision support systems: an organizational perspective. Reading, Mass., Addison-Wesley Pub. Co. ISBN 0-201-03667-3.
  • Keshteli, R. N. ve Davoodvandi, E. (2017). Using fuzzy AHP and fuzzy TOPSIS in fuzzy QFD: a case study in ceramic and tile industry of Iran. International Journal of Productivity and Quality Management, 20(2), 197-216. Erişim adresi: https://www.inderscienceonline.com /doi/abs/10.1504/IJPQM.2017.081480
  • Keskenler, M. F. ve Keskenler, E. F. (2017). Bulanık Mantığın Tarihi Gelişimi. Takvim-i Vekayi, 5 (1) , 1-10 . Erişim adresi: https://dergipark.org.tr/en/pub/takvim/issue/33455/371973
  • Koçak, B., Koçak, Y. ve Yücedağ, İ. (2020). Prediction of flexural strength of portland–composite cement mortars substituting metakaolin using fuzzy logic. Düzce University Journal of Science & Technology, 8 2377-2387. Doi: https://doi.org/10.29130/dubited.798315
  • Larsen, P. M. (1980). Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies, 12(1), 3-10. Doi: https://doi.org/10.1016/S0020-7373(80)80050-2
  • Lawson, B. (2006). How Designer Think, Fourth Edition, First Published 1980, Architectural Press, Oxford.
  • Leracitano, C., Mammone, N., Versaci, M., Varone, G., Ali, A. R., Armentano, A., ... ve Morabito, F. C. (2022). A Fuzzy-enhanced deep learning approach for early detection of covid-19 pneumonia from portable chest x-ray ımages. Neurocomputing. Doi: https://doi.org/10.1016/ j.neucom.2022.01.055
  • Ma J., Kremer, G. E. O. ve Ray, C. D. (2018). A comprehensive end-of-life strategy decision making approach to handle uncertainty in the product design stage. Research in Engineering Design, vol. 29, pp. 469-487, doi: 10.1007/s00163-017-0277-0
  • Makropoulos, C. K., Butler, D. ve Maksimovic, C. (2003). Fuzzy logic spatial decision support system for urban water management. Journal of Water Resources Planning and Management, 129(1), 69-77. Erişim adresi: https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(2003)129:1(69)
  • Malekly H., Meysam Mousavi S. ve Hashemi H., (2010). A fuzzy integrated methodology for evaluating conceptual bridge design. Expert Systems with Applications, vol. 37, no. 7, pp. 4910- 4920, doi: 10.1016/j.eswa.2009.12.024
  • Mamdani, E. H. ve Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13. Doi: https://doi.org/10.1016/S0020-7373(75)80002-2
  • Marinos, P. N. (1969). Fuzzy logic and its application to switching systems. IEEE Transactions on Computers, 100(4), 343-348. Doi: 10.1109/T-C.1969.222662
  • Megawaty, M. ve Ulfa, M. (2020). Decision support system methods: A review. Journal of Information Systems and Informatics, 2(1), 192-201. Doi: https://doi.org/10.33557/journalisi.v2i1.63
  • Mehta, R. (2021). Optimal design and modeling of sustainable buildings based on multivariate fuzzy logic. International Journal of Sustainable Development and Planning. Vol. 16, No. 1, pp. 195-206. Doi: https://doi.org/10.18280/ijsdp.160120
  • Mohebbi, A., Achiche, S. ve Baron, L. (2018). Multicriteria fuzzy decision support for conceptual evaluation in design of mechatronic systems: a quadrotor design case study. Research in Engineering Design, vol. 29, no. 3, pp. 329-349, doi: 10.1007/s00163-018-0287-6
  • Moor, J. (2006). The dartmouth college artificial ıntelligence conference: The next fifty years, AI Magazine, Vol 27, No., 4, Pp. 87-90. Doi: https://doi.org/10.1609/aimag.v27i4.1911
  • Mueller, C. T. & Ochsendorf, J. A. (2015). Combining structural performance and designer preferences in evolutionary design space exploration. Automation in Construction, 52, 70-82. Doi: https://doi.org/10.1016/j.autcon.2015.02.011
  • Nimri, R., Battelino, T., Laffel, L. M. …..et al. (2020). Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med. 26, 1380–1384 (2020). https://doi.org/10.1038/s41591-020-1045-7
  • Özbey, S., Koluman, A. ve Tokat, S. Estimation of infection risk using symptoms of COVID-19: an approach based on fuzzy expert system. Frontiers in Life Sciences and Related Technologies, 2(3), 92-102. Doi: https://doi.org/10.51753/flsrt.1010253
  • Özyılmaz Küçükyağcı, P. ve Ocakçı, M. (2019). Bulanık mantık yönteminin kentsel alan çalışmalarında kullanımı. Kent Akademisi, 12 (2), 299-308. DOI: 10.35674/kent.572209
  • Palabıyık, S. ve Çolakoğlu, B. (2012). Mimari tasarım sürecinde son ürünün değerlendirilmesi: Bir bulanık karar verme modeli.
  • Pamucar, D. (2020). Multi-criteria model for the selection of construction materials: an approach based on fuzzy logic. Tehnički vjesnik, 27(5), 1531-1543. Doi: https://doi.org/10.17559/TV- 20190426123437
  • Parameshwaran, R., Baskar, C. ve Karthik, T. (2015). An ıntegrated framework for mechatronics based product development in a fuzzy environment. Applied Soft Computing, 27, 376-390. https://doi.org/10.1016/j.asoc.2014.11.013
  • Rego, A., Ramírez, P. L. G., Jimenez, J. M. & Lloret, J. (2022). Artificial intelligent system for multimedia services in smart home environments. Cluster Computing, 25(3), 2085-2105. Doi: https://doi.org/10.1007/s10586-021-03350-z
  • Render, B. ve Stair, R. M., (1991). Quantitative Analysis for Management, 4th Edition, Allyn and Bacon, Massachusetts.
  • Rowe, P. G. (1987). Design Thinking, The MIT Press, Cambridge.
  • Saba, S., Ahsan, F. ve Mohsin, S. (2017). BAT-ANN based earthquake prediction for Pakistan region. Soft Computing, 21:5805-5813. Doi: https://doi.org/10.1007/s00500-016-2158-2
  • Serin, S., Morova, N., Sargın, Ş., Terzi, S. ve Saltan, M. (2014). The Fuzzy logic model for the prediction of marshall stability of lightweight asphalt concretes fabricated using expanded clay aggregate. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 17 (1), 163-172. Erişim adresi: https://dergipark.org.tr/en/pub/sdufenbed/issue/20800/222059
  • Shimura, M. (1975). An approach to pattern recognition and associative memories using fuzzy logic. In Fuzzy Sets and Their Applications to Cognitive and Decision Processes (pp. 449- 476). Academic Press. Doi: https://doi.org/10.1016/B978-0-12-775260-0.50024-4
  • Simoes-Marques, M., Ribeiro, R.A. ve Gameiro-Marques, A. (2000). A fuzzy decision support system for equipment repair under battle conditions, Fuzzy Sets and Systems, 115(1):141-157. Doi: https://doi.org/10.1016/S0165-0114(99)00023-8
  • Smith, R. P. ve Jeffrey, A. M. (1999). Product development process modeling. Journal of Design Studies, 20(3):237-261. Doi: https://doi.org/10.1016/S0142-694X(98)00018-0
  • Sooraj, A. ve Paul, A. (2018). Fuzzy logic ın construction project scheduling: A review. International Research Journal of Engineering and Technology. Volume: 05 Issue: 11.
  • Sutono, S. B., Abdul-Rashid, S. H., Aoyama, H. ve Taha, Z. (2016). Fuzzy-based Taguchi method for multiresponse optimization of product form design in Kansei engineering: a case study on car form design. Journal of Advanced Mechanical Design, Systems, and Manufacturing. vol. 10, no. 9, doi: 10.1299/jamdsm.2016jamdsm0108.
  • Suzuki, K. ve Chen, Y. (Eds.). (2018). Artificial intelligence in decision support systems for diagnosis in medical imaging, (Vol. 140). New York: Springer.
  • Şimşek, S. ve Sev, A. (2021). Yüksek yapılarda strüktürel sanatın bulanık mantık analitik hiyerarşi süreci yöntemi ile değerlendirilmesi. Megaron, 16(3). Doi: 10.14744/MEGARON.2021.65037.
  • Talašová, Z. (2012). Fuzzy approach to the analysis of architectural composition as applied to villa design by Adolf Loos. Czech Technical University Shape Studies. Doi: https://doi.org/10.52842/conf.ecaade.2012.1.425
  • Tao, Z. (2015). Artificial Neural Network attempts for long-term evaluation of great earthquakes, in Proceeding of 11th International Conference on Natural Computation, 1128-1132. Doi: 10.1109/ICNC.2015.7378150.
  • Tapan, M. (2004). Mimarlıkta Değerlendirme, İTÜ Yayınevi, Maçka, İstanbul.
  • Timor, M. (2011). Analitik Hiyerarşi Prosesi, Türkmen Kitabevi, İstanbul, 1-50.
  • Tushar, W., Wijerathne, N., Li, W. T., Yuen, C., Poor, H. V., Saha, T. K. ve Wood, K. L. (2018). Internet of things for green building management: Disruptive innovations through low-cost sensor technology and artificial intelligence. IEEE Signal Processing Magazine, 35(5), 100-110. Doi: 10.1109/MSP.2018.2842096.
  • Tyler, N. S., Mosquera-Lopez, C. M., Wilson, L. M., Dodier, R. H., Branigan, D. L., Gabo, V. B., ... & Jacobs, P. G. (2020). An artificial intelligence decision support system for the management of type 1 diabetes. Nature metabolism, 2(7), 612-619. Doi: https://doi.org/10.1038/s42255-020-0212-y
  • Varol Malkoçoğlu, A. B. ve İşeri, İ. (2020). Akut Lenfoblastik Löseminin Makine Öğrenimi ile Sınıflandırılması. SETSCI Conference Proceedings. Doi: https://doi.org/10.36287/setsci.4.6.139.
  • Varol, A. B. ve İşeri, İ. (2019). Lenf kanserine ilişkin patoloji görüntülerinin makine öğrenimi yöntemleri ile sınıflandırılması. Avrupa Bilim ve Teknoloji Dergisi, 404-410. Doi: https://doi.org/10.31590/ejosat.638372
  • Vasicek, D., Jalowiczor, J., Sevcik, L. ve Voznak, M. (2018). IoT smart home concept. In 2018 26th Telecommunications Forum (TELFOR) (pp. 1-4). IEEE. Doi: 10.1109/TELFOR.2018.8612078
  • Wechsler, H. (1975). Applications of fuzzy logic to medical diagnosis. Erişim adresi: https://escholarship.org/content/qt3vj1r5dw/qt3vj1r5dw.pdf
  • Wu, C. Y. (1990). Robot selection decision support system: A fuzzy set approach. Mathematical and Computer Modelling. 14, 440-443. Doi: https://doi.org/10.1016/0895-7177(90)90223-A
  • Yahyaoui, A., Jamil, A., Rasheed, J. ve Yesiltepe, M. (2019). A decision support system for diabetes prediction using machine learning and deep learning techniques. In 2019 1st International Informatics and Software Engineering Conference (UBMYK). (pp. 1-4). IEEE. Doi: 10.1109/UBMYK48245.2019.8965556
  • Yıldız, B. ve Aktaş, B. (2017). Mimari Tasarım Sürecinde Karar Verme: Bulanık Mantık Tabanlı Cephe Modeli Önerisi. MSTAS 2017, 173.
  • Zadeh, L.A. (1965). Fuzzy sets, Information and Control. 8, 338-353, doi: https://doi.org/10.1142/9789814261302_0021
  • Zhou, X., Wu, Y. ve Polochova, V. (2019). Product conceptual design method based on ıntuitionistic fuzzy binary semantics group decision making. Journal of Service Science and Management. vol. 12, pp. 742-754, doi: 10.4236/jssm.2019.126050.

Use of Artificial Intelligence Based Fuzzy Logic Systems in Architectural Design Decision Making Processes

Year 2022, Volume: 7 Issue: 2, 878 - 899, 30.12.2022
https://doi.org/10.30785/mbud.1117910

Abstract

All the built environment we see around us is a product of design. From this viewpoint, the creation of the built environment has become an increasingly complex design problem due to the wide variety of user expectations, as well as changes in information and value systems. Traditional design approaches of architects are often insufficient, in that they are unable to generate solutions to these design problems, and new design approaches are needed. Fuzzy logic-based decision support systems can help identify problems and complete the decision-making process by using data, documents, information, and communication technologies and models; in this study, these support systems are compared with traditional methods, and their advantages and disadvantages are discussed.

References

  • Altaş, İ. H. (1999). Bulanık mantık: bulanıklılık kavramı. Enerji, Elektrik, Elektromekanik-3e, 62, 80-85. Erişim adresi: https://dijitalbasin.com/Read/387/3e-elektrotech-dergisi
  • Arabacıoğlu, B. C. (2010). Using fuzzy inference system for architectural space analysis. Applied Soft Computing, 10(3), 926-937. doi: https://doi.org/10.1016/j.asoc.2009.10.011
  • Austin, S., Baldwin, A., Baizhan, Li, B. ve Waskett, P. (1999). Analytical design planning technique: A model of the detailed building design process. Journal of Design Studies, 20(3):279-296. doi: https://doi.org/10.1016/S0142-694X(98)00038-6
  • Ayağ, Z. ve Özdemir, R. G. (2009). A hybrid approach to concept selection through fuzzy analytic network process. Computers & Industrial Engineering, vol. 56, no. 1, pp. 368-379, doi: 10.1016/j.cie.2008.06.011
  • Ayağ, Z. (2005). A fuzzy AHP-based simulation approach to concept evaluation in a NPD environment. IIE Transactions, vol. 37, no. 9, pp. 827-842, doi:10.1080/07408170590969852.
  • Bansal, S., Biswas S. ve Singh S. (2017). Fuzzy decision approach for selection of most suitable construction method of green buildings. International Journal of Sustainable Built Environment 6, 122–132. doi: https://doi.org/10.1016/j.ijsbe.2017.02.005
  • Bayazıt, N. (2004). Endüstriyel Tasarımcılar İçin Tasarlama Kuramları ve Metotları, Birsen Yayınevi, İstanbul.
  • Behesti, M.R. ve Monroy, M. R. (1986). ADIS: Steps towards developing an architecture design ınformation system. Open House International, 11(2):38-45. Erişim adresi: https://www.emeraldgrouppublishing.com/journal/ohi
  • Beşikçi, E. B., Arslan, O., Turan, O. ve Ölçer, A. I. (2016). An artificial neural network based decision support system for energy efficient ship operations. Computers & Operations Research, 66, 393–401. Doi: https://doi.org/10.1016/j.cor.2015.04.004
  • Bozdemır, M. (2017). Yapay zekâ destekli bir tasarım işlem modelinin yapısı. International Journal of 3D Printing Technologies and Digital Industry, 1 (1), 1-8. Erişim adresi: https://dergipark.org.tr/en/pub/ij3dptdi/issue/33982/376173
  • Bozdemir, M. ve Mendi, F. (2013). Yapay zekâ destekli sistematik tasarım için bilgi yönetim sistem mimarisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 20 (2). Erişim adresi: https://dergipark.org.tr/en/pub/gazimmfd/issue/6664/88916
  • Chin, K.-S., Chan A. ve Yang J.-B. (2008). Development of a fuzzy FMEA based product design system, The International Journal of Advanced Manufacturing Technology, vol. 36, no. 7, pp. 633- 649, doi: 10.1007/s00170-006-0898-3
  • Chou, Y. C. ve Benjamin, C. O. (1992). An AI-based decision support system for naval ship design. Naval Engineers Journal, 104(3), 156–165. Doi: https://doi.org/10.1111/j.1559- 3584.1992.tb02235.x
  • Conrads, U. (1991). 20. Yüzyıl Mimarisinde Program ve Manifestolar, Şevki Vanlı Mimarlık Vakfı
  • Cooper, R. ve Press, M. (1995). The Design Agenda: A Guide to Successful Design Management, John Wiley&Sons Ltd., Chichester
  • Cross, N. (2000). Engineering Design Methods: Strategies for Product Design, 3. Edition, John Wiley & Sons, Chichester
  • Çekmiş, A. (2016). Fuzzy logic in architectural site planning design. Procedia Computer Science. 102– 182. doi: https://doi.org/10.1016/j.procs.2016.09.386
  • Ciftcioglu, O. (2003). Design enhancement by fuzzy logic in architecture. In The 12th IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 79-84. IEEE. Doi: 10.1109/FUZZ.2003.1209341
  • Çiftçioğlu Ö. ve Sarıyıldız S. (1998). Integrated building design decision support with fuzzy logic. Transactions on Information and Communications Technologies, vol 20. Doi: 10.2495/AI980031
  • Das, S., Swetapadma, A. ve Panigrahi, C. (2019). A study on the application of artificial intelligence techniques for predicting the heating and cooling loads of buildings. Journal of Green Building, 14(3), 115-128. Doi: https://doi.org/10.3992/1943-4618.14.3.115
  • Demirarslan, D. (2006). İç Mekân Tasarımına Giriş. Kocaeli: Kocaeli Üniversitesi Yayınları
  • Ding, X. ve Liu, B. (2007). The utility of linguistic rules in opinion mining. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 811-812). Doi: https://doi.org/10.1145/1277741.1277921
  • Ediz, F. E. (2006). Mimari Yapısal Öğelerin Tasarımı İçin Bir Yöntem, Doktora Tezi, İTÜ, Fen Bilimler Enstitüsü, İstanbul.
  • Esen, Ö. (1998). İşletme Yönetiminde Sistem Yaklaşımı, Alfa Basım Yayım Dağıtım, 56-60.
  • Fayek, A. (2020). Fuzzy logic and fuzzy hybrid techniques for construction engineering and management. J. Constr. Eng. Manage., 146(7): 04020064. doi: http://ascelibrary.org/doi/10.1061/(ASCE)CO.1943-7862.0001263.
  • Gencel, O., Özel, C., Köksal, F. ve Martinez, G. (2013). Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete. Materials Science (Medziagotyra). Vol. 19, No. 2. Doi: https://doi.org/10.5755/j01.ms.19.2.4439
  • Gero, J. S. (1975). Architectural optimization – A Review, Engineering Optimization, 1(3):189-199. Doi: https://doi.org/10.1080/03052157508960586
  • Goud, A., Mounika, K. ve Prakash, A. (2020). Fuzzy model development in green building material. selection. International Journal of Recent Technology and Engineering, Volume-9 Issue- 1. DOI:10.35940/ijrte. B2045.059120
  • Güneş, H., Orta, E. ve Akdaş, D. (2016). Akıllı ev sistemlerinde kullanılan yapay zekâ teknikleri için yapay veri üretici geliştirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18 (2), 1- 11. DOI: 10.25092/baunfbed.280151
  • Huang, H.-Z., Liu, Y., Li, Y., Xue, L. ve Wang, Z. (2013). New evaluation methods for conceptual design selection using computational intelligence techniques, Journal of Mechanical Science and Technology, vol. 27, no. 3, pp. 733-746, doi: 10.1007/s12206-013-0123-x.
  • Ireland, R. ve Liu, A. (2018). Application of data analytics for product design: Sentiment analysis of online product reviews. CIRP Journal of Manufacturing Science and Technology, 23, 128-144. Doi: https://doi.org/10.1016/j.cirpj.2018.06.003
  • İzgi, U. (1999). Mimarlıkta Süreç, Kavramlar-İlişkiler 1. baskı, Yapı-Endüstri Merkezi Yayınları, İstanbul, Cilt 201,199-200
  • Jaihar, J., Lingayat, N., Vijaybhai, P. S., Venkatesh, G. ve Upla, K. P. (2020). Smart home automation using machine learning algorithms. In 2020 International Conference for Emerging Technology (INCET) (pp. 1-4). IEEE. Doi: 10.1109/INCET49848.2020.9154007
  • Jin, J., Ji, P. ve Gu, R. (2016). Identifying comparative customer requirements from product online reviews for competitor analysis. Engineering Applications of Artificial Intelligence, 49, 61- 73. Doi: https://doi.org/10.1016/j.engappai.2015.12.005
  • Jones, J. C. (1980). Design Methods, John Wiley & Sons Ltd, New York
  • Kang, X. (2020). Aesthetic product design combining with rough set theory and fuzzy quality function deployment. Journal of Intelligent & Fuzzy Systems, vol. 39, pp. 1131-1146, doi: 10.3233/JIFS-192032
  • Kang, X., Yang, M., Wu, Y. ve Ni, B. (2018). Integrating evaluation grid method and fuzzy quality function deployment to new product development. Mathematical Problems in Engineering, 2018. Doi: https://doi.org/10.1155/2018/2451470
  • Kazanasmaz, Z. T. ve Tayfur, G. (2010). Hasta bakım ünitelerinin tasarım verimliliklerinin bulanık mantık modeli bağlamında değerlendirilmesi. Megaron. Erişim adresi: https://app.trdizin.gov.tr/makale/TVRFNU56QXdNQT09
  • Keen, P. G. W. (1978). Decision support systems: an organizational perspective. Reading, Mass., Addison-Wesley Pub. Co. ISBN 0-201-03667-3.
  • Keshteli, R. N. ve Davoodvandi, E. (2017). Using fuzzy AHP and fuzzy TOPSIS in fuzzy QFD: a case study in ceramic and tile industry of Iran. International Journal of Productivity and Quality Management, 20(2), 197-216. Erişim adresi: https://www.inderscienceonline.com /doi/abs/10.1504/IJPQM.2017.081480
  • Keskenler, M. F. ve Keskenler, E. F. (2017). Bulanık Mantığın Tarihi Gelişimi. Takvim-i Vekayi, 5 (1) , 1-10 . Erişim adresi: https://dergipark.org.tr/en/pub/takvim/issue/33455/371973
  • Koçak, B., Koçak, Y. ve Yücedağ, İ. (2020). Prediction of flexural strength of portland–composite cement mortars substituting metakaolin using fuzzy logic. Düzce University Journal of Science & Technology, 8 2377-2387. Doi: https://doi.org/10.29130/dubited.798315
  • Larsen, P. M. (1980). Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies, 12(1), 3-10. Doi: https://doi.org/10.1016/S0020-7373(80)80050-2
  • Lawson, B. (2006). How Designer Think, Fourth Edition, First Published 1980, Architectural Press, Oxford.
  • Leracitano, C., Mammone, N., Versaci, M., Varone, G., Ali, A. R., Armentano, A., ... ve Morabito, F. C. (2022). A Fuzzy-enhanced deep learning approach for early detection of covid-19 pneumonia from portable chest x-ray ımages. Neurocomputing. Doi: https://doi.org/10.1016/ j.neucom.2022.01.055
  • Ma J., Kremer, G. E. O. ve Ray, C. D. (2018). A comprehensive end-of-life strategy decision making approach to handle uncertainty in the product design stage. Research in Engineering Design, vol. 29, pp. 469-487, doi: 10.1007/s00163-017-0277-0
  • Makropoulos, C. K., Butler, D. ve Maksimovic, C. (2003). Fuzzy logic spatial decision support system for urban water management. Journal of Water Resources Planning and Management, 129(1), 69-77. Erişim adresi: https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(2003)129:1(69)
  • Malekly H., Meysam Mousavi S. ve Hashemi H., (2010). A fuzzy integrated methodology for evaluating conceptual bridge design. Expert Systems with Applications, vol. 37, no. 7, pp. 4910- 4920, doi: 10.1016/j.eswa.2009.12.024
  • Mamdani, E. H. ve Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13. Doi: https://doi.org/10.1016/S0020-7373(75)80002-2
  • Marinos, P. N. (1969). Fuzzy logic and its application to switching systems. IEEE Transactions on Computers, 100(4), 343-348. Doi: 10.1109/T-C.1969.222662
  • Megawaty, M. ve Ulfa, M. (2020). Decision support system methods: A review. Journal of Information Systems and Informatics, 2(1), 192-201. Doi: https://doi.org/10.33557/journalisi.v2i1.63
  • Mehta, R. (2021). Optimal design and modeling of sustainable buildings based on multivariate fuzzy logic. International Journal of Sustainable Development and Planning. Vol. 16, No. 1, pp. 195-206. Doi: https://doi.org/10.18280/ijsdp.160120
  • Mohebbi, A., Achiche, S. ve Baron, L. (2018). Multicriteria fuzzy decision support for conceptual evaluation in design of mechatronic systems: a quadrotor design case study. Research in Engineering Design, vol. 29, no. 3, pp. 329-349, doi: 10.1007/s00163-018-0287-6
  • Moor, J. (2006). The dartmouth college artificial ıntelligence conference: The next fifty years, AI Magazine, Vol 27, No., 4, Pp. 87-90. Doi: https://doi.org/10.1609/aimag.v27i4.1911
  • Mueller, C. T. & Ochsendorf, J. A. (2015). Combining structural performance and designer preferences in evolutionary design space exploration. Automation in Construction, 52, 70-82. Doi: https://doi.org/10.1016/j.autcon.2015.02.011
  • Nimri, R., Battelino, T., Laffel, L. M. …..et al. (2020). Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med. 26, 1380–1384 (2020). https://doi.org/10.1038/s41591-020-1045-7
  • Özbey, S., Koluman, A. ve Tokat, S. Estimation of infection risk using symptoms of COVID-19: an approach based on fuzzy expert system. Frontiers in Life Sciences and Related Technologies, 2(3), 92-102. Doi: https://doi.org/10.51753/flsrt.1010253
  • Özyılmaz Küçükyağcı, P. ve Ocakçı, M. (2019). Bulanık mantık yönteminin kentsel alan çalışmalarında kullanımı. Kent Akademisi, 12 (2), 299-308. DOI: 10.35674/kent.572209
  • Palabıyık, S. ve Çolakoğlu, B. (2012). Mimari tasarım sürecinde son ürünün değerlendirilmesi: Bir bulanık karar verme modeli.
  • Pamucar, D. (2020). Multi-criteria model for the selection of construction materials: an approach based on fuzzy logic. Tehnički vjesnik, 27(5), 1531-1543. Doi: https://doi.org/10.17559/TV- 20190426123437
  • Parameshwaran, R., Baskar, C. ve Karthik, T. (2015). An ıntegrated framework for mechatronics based product development in a fuzzy environment. Applied Soft Computing, 27, 376-390. https://doi.org/10.1016/j.asoc.2014.11.013
  • Rego, A., Ramírez, P. L. G., Jimenez, J. M. & Lloret, J. (2022). Artificial intelligent system for multimedia services in smart home environments. Cluster Computing, 25(3), 2085-2105. Doi: https://doi.org/10.1007/s10586-021-03350-z
  • Render, B. ve Stair, R. M., (1991). Quantitative Analysis for Management, 4th Edition, Allyn and Bacon, Massachusetts.
  • Rowe, P. G. (1987). Design Thinking, The MIT Press, Cambridge.
  • Saba, S., Ahsan, F. ve Mohsin, S. (2017). BAT-ANN based earthquake prediction for Pakistan region. Soft Computing, 21:5805-5813. Doi: https://doi.org/10.1007/s00500-016-2158-2
  • Serin, S., Morova, N., Sargın, Ş., Terzi, S. ve Saltan, M. (2014). The Fuzzy logic model for the prediction of marshall stability of lightweight asphalt concretes fabricated using expanded clay aggregate. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 17 (1), 163-172. Erişim adresi: https://dergipark.org.tr/en/pub/sdufenbed/issue/20800/222059
  • Shimura, M. (1975). An approach to pattern recognition and associative memories using fuzzy logic. In Fuzzy Sets and Their Applications to Cognitive and Decision Processes (pp. 449- 476). Academic Press. Doi: https://doi.org/10.1016/B978-0-12-775260-0.50024-4
  • Simoes-Marques, M., Ribeiro, R.A. ve Gameiro-Marques, A. (2000). A fuzzy decision support system for equipment repair under battle conditions, Fuzzy Sets and Systems, 115(1):141-157. Doi: https://doi.org/10.1016/S0165-0114(99)00023-8
  • Smith, R. P. ve Jeffrey, A. M. (1999). Product development process modeling. Journal of Design Studies, 20(3):237-261. Doi: https://doi.org/10.1016/S0142-694X(98)00018-0
  • Sooraj, A. ve Paul, A. (2018). Fuzzy logic ın construction project scheduling: A review. International Research Journal of Engineering and Technology. Volume: 05 Issue: 11.
  • Sutono, S. B., Abdul-Rashid, S. H., Aoyama, H. ve Taha, Z. (2016). Fuzzy-based Taguchi method for multiresponse optimization of product form design in Kansei engineering: a case study on car form design. Journal of Advanced Mechanical Design, Systems, and Manufacturing. vol. 10, no. 9, doi: 10.1299/jamdsm.2016jamdsm0108.
  • Suzuki, K. ve Chen, Y. (Eds.). (2018). Artificial intelligence in decision support systems for diagnosis in medical imaging, (Vol. 140). New York: Springer.
  • Şimşek, S. ve Sev, A. (2021). Yüksek yapılarda strüktürel sanatın bulanık mantık analitik hiyerarşi süreci yöntemi ile değerlendirilmesi. Megaron, 16(3). Doi: 10.14744/MEGARON.2021.65037.
  • Talašová, Z. (2012). Fuzzy approach to the analysis of architectural composition as applied to villa design by Adolf Loos. Czech Technical University Shape Studies. Doi: https://doi.org/10.52842/conf.ecaade.2012.1.425
  • Tao, Z. (2015). Artificial Neural Network attempts for long-term evaluation of great earthquakes, in Proceeding of 11th International Conference on Natural Computation, 1128-1132. Doi: 10.1109/ICNC.2015.7378150.
  • Tapan, M. (2004). Mimarlıkta Değerlendirme, İTÜ Yayınevi, Maçka, İstanbul.
  • Timor, M. (2011). Analitik Hiyerarşi Prosesi, Türkmen Kitabevi, İstanbul, 1-50.
  • Tushar, W., Wijerathne, N., Li, W. T., Yuen, C., Poor, H. V., Saha, T. K. ve Wood, K. L. (2018). Internet of things for green building management: Disruptive innovations through low-cost sensor technology and artificial intelligence. IEEE Signal Processing Magazine, 35(5), 100-110. Doi: 10.1109/MSP.2018.2842096.
  • Tyler, N. S., Mosquera-Lopez, C. M., Wilson, L. M., Dodier, R. H., Branigan, D. L., Gabo, V. B., ... & Jacobs, P. G. (2020). An artificial intelligence decision support system for the management of type 1 diabetes. Nature metabolism, 2(7), 612-619. Doi: https://doi.org/10.1038/s42255-020-0212-y
  • Varol Malkoçoğlu, A. B. ve İşeri, İ. (2020). Akut Lenfoblastik Löseminin Makine Öğrenimi ile Sınıflandırılması. SETSCI Conference Proceedings. Doi: https://doi.org/10.36287/setsci.4.6.139.
  • Varol, A. B. ve İşeri, İ. (2019). Lenf kanserine ilişkin patoloji görüntülerinin makine öğrenimi yöntemleri ile sınıflandırılması. Avrupa Bilim ve Teknoloji Dergisi, 404-410. Doi: https://doi.org/10.31590/ejosat.638372
  • Vasicek, D., Jalowiczor, J., Sevcik, L. ve Voznak, M. (2018). IoT smart home concept. In 2018 26th Telecommunications Forum (TELFOR) (pp. 1-4). IEEE. Doi: 10.1109/TELFOR.2018.8612078
  • Wechsler, H. (1975). Applications of fuzzy logic to medical diagnosis. Erişim adresi: https://escholarship.org/content/qt3vj1r5dw/qt3vj1r5dw.pdf
  • Wu, C. Y. (1990). Robot selection decision support system: A fuzzy set approach. Mathematical and Computer Modelling. 14, 440-443. Doi: https://doi.org/10.1016/0895-7177(90)90223-A
  • Yahyaoui, A., Jamil, A., Rasheed, J. ve Yesiltepe, M. (2019). A decision support system for diabetes prediction using machine learning and deep learning techniques. In 2019 1st International Informatics and Software Engineering Conference (UBMYK). (pp. 1-4). IEEE. Doi: 10.1109/UBMYK48245.2019.8965556
  • Yıldız, B. ve Aktaş, B. (2017). Mimari Tasarım Sürecinde Karar Verme: Bulanık Mantık Tabanlı Cephe Modeli Önerisi. MSTAS 2017, 173.
  • Zadeh, L.A. (1965). Fuzzy sets, Information and Control. 8, 338-353, doi: https://doi.org/10.1142/9789814261302_0021
  • Zhou, X., Wu, Y. ve Polochova, V. (2019). Product conceptual design method based on ıntuitionistic fuzzy binary semantics group decision making. Journal of Service Science and Management. vol. 12, pp. 742-754, doi: 10.4236/jssm.2019.126050.
There are 88 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Review Articles
Authors

Didem Baran Ergül 0000-0001-5705-8885

Ayşe Berika Varol Malkoçoğlu 0000-0003-1856-9636

Seden Acun Özgünler 0000-0001-5975-5115

Publication Date December 30, 2022
Submission Date May 18, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

APA Baran Ergül, D., Varol Malkoçoğlu, A. B., & Acun Özgünler, S. (2022). Mimari Tasarım Karar Verme Süreçlerinde Yapay Zekâ Tabanlı Bulanık Mantık Sistemerinin Değerlendirilmesi. Journal of Architectural Sciences and Applications, 7(2), 878-899. https://doi.org/10.30785/mbud.1117910