BibTex RIS Cite

Matematik Eğitiminde Bilişsel ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği

Year 2012, Volume: 1 Issue: 1, 41 - 51, 01.06.2014

Abstract

Matematik derslerinin ö rencilerin dü ünme becerilerini daha da geli tirebilmesi için ö retmenlerin bu derslerdeki rollerinin ve görevlerinin yeniden tan mlanmas na ihtiyaç duyuldu u dü ünülmektedir. Matematik retmenlerinin yeni tan mlar nda dematematik ve fen ve teknoloji dersi ö retmenlerine bili sel bilim alan nda çalkonular ile üst bili ve özdenetim konular nda yap lan arauygulamalar ndan örnekler sunmak amac yla “Bili sel ve Bili üstü Ö retim Uygulamalar " konulu bir çal tay düzenlenmi tir. Çal tay kapsam nda bili sel ve bili üstü ba lam ndaki güncel çal ma alanlarolu turulmas na, setkinlikleri yer almaktad r. Çal ma sonunda kat mc lardan de erlendirme amac yla bili selbilim, üstbili ve özdenetim konularistenmi tir. Anket verilerinden elde edilen bulgular çal tay sonras kat mc e itimcilerin bili sel bilim ve bili üstü konular ndaki güncel yakla mlara yönelik bir e itime ili kin olumlu görü lerine i aret etmektedir

References

  • Annevirta, T., & Vauras, M. (2001). Metacognitive knowledge in primary grades: a longitudinal study. European Journal of Psychology of Education, 16, 257–282.
  • Anglin, G. J., Vaez, H., & Cunningham, K. L. (2004). Visual represantation and learning: The role of static and animated graphics. D. H. Jonassen (Ed.), Handbook of Research on Educational Communication and Technology (s. 865-916). Mahwah, New Jersey: Lawrence Erlbaum Associates.
  • Ansari, D., Coch, D., & De Smedt, B. (2011). Connecting education and cognitive neuroscience: Where will the journey take us? Special Issue: Educational Neuroscience, 43, 37–42.
  • Berninger, V. W., & Corina, D. (1997). Making cognitive neuroscience educationally relevant: Creating bidirectional collaborations between educational psychology and cognitive neuroscience. Educational Psychology Review, 10(3), 343-354.
  • Borko, H., & Putnam, R. T. (1996). Learning to teach. D. C. Berlinger, ve R. C. Calfee (Eds), Handbook of Educational Psychology (s. 673-708), New York: Simon ve Schuster Macmillan.
  • Cobb, P., Yackel, E., & Wood, T. (1993). Learning mathematics: Multiple perspectives: Theoretical orientation. T. Wood, P. Cobb, E. Yackel ve D. Dillon (Eds.), Rethinking Elementary School Mathematics: Insights and Issues. Journal for Research in Mathematics Education Monograph Number 6 (s. 21-32). Reston, VA: National Council of Teachers of Mathematics.
  • Cohen, D. (1990). A Revolution in one classroom: The case of Mrs. Oublier. Educational Evaluation and Policy Analysis, 12(3), 311-329.
  • Coburn, C. E., & Stein, M. K. (2010). Research and Practice in Education: Building Alliances, Bridging the Divide. Lanham, MD: Rowman & Littlefield.
  • De Corte, E., Verschaffel, L., & Masui, C. (2004). The CLIA-model: A framework for designing powerful learning environments for thinking and problem solving. European Journal of Psychology of Education, 19(4): 365-384.
  • De Jong, T., van Gog, T., Jenks. K., Manlove, S., van Hell, J., Jolles, J., van Merrienboer, J., van Leeuwen, T., & Boschloo, A. (2009). Explorations in Learning and the Brain: On the Potential of Cognitive Neuroscience for Educational Science. New York: Springer. De Smedt, B., Ansari, D., Grabner, R. H., Hannulad, M. M., Schneider, M., &
  • Verschaffel, L. (2010). Cognitive neuroscience meets mathematics education. Educational Research Review, 5, 97–105.
  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. L. B. Resnick (Ed.), The Nature of Intelligence (s. 231–236). Hillsdale, NJ: Erlbaum.
  • Flavell, J. H., Beach, D. R., & Chinsky, J. M. (1966). Spontaneous verbal rehearsal in memory task as a function of age. Child Development, 37, 283–299.
  • Fraivillig, J. (1999) Advancing children's mathematical thinking in everyday mathematics classrooms. Journal for Research in Mathematics Education, 30(2) 148-171.
  • Franke, M. L., & Kazemi, E. (2001). Learning to teach mathematics: Focus on student thinking. Theory into practice, 40(2), 102-109.
  • Goswami, U. (2004). Neuroscience and education, British Journal of Educational Psychology, 74, 1-14.
  • Huang, J., & Prochner, L. (2004). Chinese parenting styles and children's self-regulated learning. Journal of Research in Childhood Education, 18, 227-238.
  • ,úÕksal, M., Koç, Y., Bulut, S., & Atay-Turhan, T. (2007). An analysis of the new elementary mathematics teacher education curriculum in Turkey. The Mathematics Educator, 17(2), 41–51.
  • Jung-Beeman, M. (2004). Neural activity when people solve problems with insight. PloS Biology, 2: 500-510.
  • Karoly, P., Boekaerts, M., & Maes, S. (2005). Toward consensus in the psychology of self-regulation: How far have we come? How far do we have yet to travel? Applied Pschology: An International Review, 54(2), 300–311.
  • Kaufman, J. H., & Stein, M. K. (2010). Teacher learning opportunities in a shifting policy environment for instruction. Educational Policy, 24(4), 563-601.
  • Kalyuga, S. (2006). Instruction and Testing Advanced Learners: A Cognitive Load Approach. New York: Nova Science Publishers.
  • .ÕOÕç Çakmak, E. (2007). Çoklu ortamlarda dar bo÷az: AúÕUÕ biliúsel yüklenme. Gazi E÷itim Fakültesi Dergisi, 27( 2), 1-24.
  • Koc,Y., Isiksal, M., & Bulut, S. (2007). Elementary school curriculum reform in Turkey. International Education Journal, 8(1), 30-39.
  • Lesh, R. (1981). Applied mathematical problem solving, Educational Studies in Mathematics, 12(2), 235-264.
  • Manning, B. H. (1991). Cognitive Self-Instruction (CSI) for Classroom Processes. NY: State University of New York Press
  • Miller, G. A. (1956). The magical number seven, plus minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97.
  • Muir T., Beswick K., & Williamson J. (2008). “I’m not very good at solving problems”: An exploration of students’ problem solving behaviours, The Journal of Mathematical Behavior, 7(4), 228-241.
  • Nathan, M. J., & Petrosino, A. J. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40(4), 905-928.
  • Paas, F., Tuovinen, J. E., Tabbers, H., & Van Germen, P. W. M. (2003). Cognitive Load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63-71.
  • Peterson, P., Fennema, E., Carpenter, T., & Loef, M. (1989). Teachers’ pedagogical content beliefs in mathematics. Cognition and Instruction, 6, 1-40.
  • Piaget, J. (1977). The Grasp of Consciousness. London: Routledge & Kegan Paul.
  • Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33- 40.
  • Polya, G. (1957). How to Solve It. Princeton University Press.
  • Scheidler, K. P. (1994). Changing teacher thinking in school restructuring: A view from the trenches. Journal of Education, 176 (2), 45-56.
  • Schloemer, P., & Brenan, K. (2006). From students to learners: Developing self-regulated learning. Journal of Education for Business, November-December, 81-88.
  • Schnotz, W., & Kurschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19, 469–508.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and sensemaking in mathematics. D. Grows (Ed.), Handbook for Research on Mathematics Teaching and Learning (s. 334-370). New York: Macmillan.
  • Sandkuhler S., & Bhattacharya J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. Plos ONE, 3(1): e1459.doi:10.1371/
  • Scandura J. M. (1974). Mathematical problem solving. The American Mathematical Monthly, 81(3), 273-280.
  • Schraw, G. (1994). The effect of metacognitive knowledge on local and global monitoring. Contemporary Educational Psychology, 19, 143-154.
  • Spillane, J.S., & Jennings, N.E. (1997). Aligned instructional policy and ambitious pedagogy: Exploring instructional reform from the classroom perspective. Teachers College Record, 98(3), 449-481.
  • Stigler, J., & Hiebert, J. (1999). The Teaching Gap. New York: Free Press.
  • Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296.
  • Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14.
  • Wang, M. C., Haertel, G. D., & Walberg, H. J. (1990). What influences learning? A content analysis of review literature. Journal of Educational Research, 84, 30-43.
  • Whitebread, D., Coltman, P., Pino Pasternak, D., Sangster, C., Grau, V., Bingham, S., et al. (2009). The development of two observational tools for assessing meta cognition and self regulated learning in young children. Metacognition and Learning, 4(1), 63–85.
  • Whitebread, D., & Coltman, P. (2010). Aspects of pedagogy supporting metacognition and selfregulation in mathematical learning of young children: evidence from an observational study. ZDM, 42(2) 149-161.
  • Zimmerman, B. J., & Schunk, D. H. (1998). Self-Regulated Learning: From Teaching to Self-Reflective Practice. New York: The Guilford Press.
  • Zimmerman, B. J. (2001). Self-regulated learning and academic achievement: An overview and analysis. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: Theoretical perspectives (pp. 1-36). Mahwah, NJ : Lawrence Erlbaum Associates.
Year 2012, Volume: 1 Issue: 1, 41 - 51, 01.06.2014

Abstract

References

  • Annevirta, T., & Vauras, M. (2001). Metacognitive knowledge in primary grades: a longitudinal study. European Journal of Psychology of Education, 16, 257–282.
  • Anglin, G. J., Vaez, H., & Cunningham, K. L. (2004). Visual represantation and learning: The role of static and animated graphics. D. H. Jonassen (Ed.), Handbook of Research on Educational Communication and Technology (s. 865-916). Mahwah, New Jersey: Lawrence Erlbaum Associates.
  • Ansari, D., Coch, D., & De Smedt, B. (2011). Connecting education and cognitive neuroscience: Where will the journey take us? Special Issue: Educational Neuroscience, 43, 37–42.
  • Berninger, V. W., & Corina, D. (1997). Making cognitive neuroscience educationally relevant: Creating bidirectional collaborations between educational psychology and cognitive neuroscience. Educational Psychology Review, 10(3), 343-354.
  • Borko, H., & Putnam, R. T. (1996). Learning to teach. D. C. Berlinger, ve R. C. Calfee (Eds), Handbook of Educational Psychology (s. 673-708), New York: Simon ve Schuster Macmillan.
  • Cobb, P., Yackel, E., & Wood, T. (1993). Learning mathematics: Multiple perspectives: Theoretical orientation. T. Wood, P. Cobb, E. Yackel ve D. Dillon (Eds.), Rethinking Elementary School Mathematics: Insights and Issues. Journal for Research in Mathematics Education Monograph Number 6 (s. 21-32). Reston, VA: National Council of Teachers of Mathematics.
  • Cohen, D. (1990). A Revolution in one classroom: The case of Mrs. Oublier. Educational Evaluation and Policy Analysis, 12(3), 311-329.
  • Coburn, C. E., & Stein, M. K. (2010). Research and Practice in Education: Building Alliances, Bridging the Divide. Lanham, MD: Rowman & Littlefield.
  • De Corte, E., Verschaffel, L., & Masui, C. (2004). The CLIA-model: A framework for designing powerful learning environments for thinking and problem solving. European Journal of Psychology of Education, 19(4): 365-384.
  • De Jong, T., van Gog, T., Jenks. K., Manlove, S., van Hell, J., Jolles, J., van Merrienboer, J., van Leeuwen, T., & Boschloo, A. (2009). Explorations in Learning and the Brain: On the Potential of Cognitive Neuroscience for Educational Science. New York: Springer. De Smedt, B., Ansari, D., Grabner, R. H., Hannulad, M. M., Schneider, M., &
  • Verschaffel, L. (2010). Cognitive neuroscience meets mathematics education. Educational Research Review, 5, 97–105.
  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. L. B. Resnick (Ed.), The Nature of Intelligence (s. 231–236). Hillsdale, NJ: Erlbaum.
  • Flavell, J. H., Beach, D. R., & Chinsky, J. M. (1966). Spontaneous verbal rehearsal in memory task as a function of age. Child Development, 37, 283–299.
  • Fraivillig, J. (1999) Advancing children's mathematical thinking in everyday mathematics classrooms. Journal for Research in Mathematics Education, 30(2) 148-171.
  • Franke, M. L., & Kazemi, E. (2001). Learning to teach mathematics: Focus on student thinking. Theory into practice, 40(2), 102-109.
  • Goswami, U. (2004). Neuroscience and education, British Journal of Educational Psychology, 74, 1-14.
  • Huang, J., & Prochner, L. (2004). Chinese parenting styles and children's self-regulated learning. Journal of Research in Childhood Education, 18, 227-238.
  • ,úÕksal, M., Koç, Y., Bulut, S., & Atay-Turhan, T. (2007). An analysis of the new elementary mathematics teacher education curriculum in Turkey. The Mathematics Educator, 17(2), 41–51.
  • Jung-Beeman, M. (2004). Neural activity when people solve problems with insight. PloS Biology, 2: 500-510.
  • Karoly, P., Boekaerts, M., & Maes, S. (2005). Toward consensus in the psychology of self-regulation: How far have we come? How far do we have yet to travel? Applied Pschology: An International Review, 54(2), 300–311.
  • Kaufman, J. H., & Stein, M. K. (2010). Teacher learning opportunities in a shifting policy environment for instruction. Educational Policy, 24(4), 563-601.
  • Kalyuga, S. (2006). Instruction and Testing Advanced Learners: A Cognitive Load Approach. New York: Nova Science Publishers.
  • .ÕOÕç Çakmak, E. (2007). Çoklu ortamlarda dar bo÷az: AúÕUÕ biliúsel yüklenme. Gazi E÷itim Fakültesi Dergisi, 27( 2), 1-24.
  • Koc,Y., Isiksal, M., & Bulut, S. (2007). Elementary school curriculum reform in Turkey. International Education Journal, 8(1), 30-39.
  • Lesh, R. (1981). Applied mathematical problem solving, Educational Studies in Mathematics, 12(2), 235-264.
  • Manning, B. H. (1991). Cognitive Self-Instruction (CSI) for Classroom Processes. NY: State University of New York Press
  • Miller, G. A. (1956). The magical number seven, plus minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97.
  • Muir T., Beswick K., & Williamson J. (2008). “I’m not very good at solving problems”: An exploration of students’ problem solving behaviours, The Journal of Mathematical Behavior, 7(4), 228-241.
  • Nathan, M. J., & Petrosino, A. J. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40(4), 905-928.
  • Paas, F., Tuovinen, J. E., Tabbers, H., & Van Germen, P. W. M. (2003). Cognitive Load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63-71.
  • Peterson, P., Fennema, E., Carpenter, T., & Loef, M. (1989). Teachers’ pedagogical content beliefs in mathematics. Cognition and Instruction, 6, 1-40.
  • Piaget, J. (1977). The Grasp of Consciousness. London: Routledge & Kegan Paul.
  • Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33- 40.
  • Polya, G. (1957). How to Solve It. Princeton University Press.
  • Scheidler, K. P. (1994). Changing teacher thinking in school restructuring: A view from the trenches. Journal of Education, 176 (2), 45-56.
  • Schloemer, P., & Brenan, K. (2006). From students to learners: Developing self-regulated learning. Journal of Education for Business, November-December, 81-88.
  • Schnotz, W., & Kurschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19, 469–508.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and sensemaking in mathematics. D. Grows (Ed.), Handbook for Research on Mathematics Teaching and Learning (s. 334-370). New York: Macmillan.
  • Sandkuhler S., & Bhattacharya J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. Plos ONE, 3(1): e1459.doi:10.1371/
  • Scandura J. M. (1974). Mathematical problem solving. The American Mathematical Monthly, 81(3), 273-280.
  • Schraw, G. (1994). The effect of metacognitive knowledge on local and global monitoring. Contemporary Educational Psychology, 19, 143-154.
  • Spillane, J.S., & Jennings, N.E. (1997). Aligned instructional policy and ambitious pedagogy: Exploring instructional reform from the classroom perspective. Teachers College Record, 98(3), 449-481.
  • Stigler, J., & Hiebert, J. (1999). The Teaching Gap. New York: Free Press.
  • Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296.
  • Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14.
  • Wang, M. C., Haertel, G. D., & Walberg, H. J. (1990). What influences learning? A content analysis of review literature. Journal of Educational Research, 84, 30-43.
  • Whitebread, D., Coltman, P., Pino Pasternak, D., Sangster, C., Grau, V., Bingham, S., et al. (2009). The development of two observational tools for assessing meta cognition and self regulated learning in young children. Metacognition and Learning, 4(1), 63–85.
  • Whitebread, D., & Coltman, P. (2010). Aspects of pedagogy supporting metacognition and selfregulation in mathematical learning of young children: evidence from an observational study. ZDM, 42(2) 149-161.
  • Zimmerman, B. J., & Schunk, D. H. (1998). Self-Regulated Learning: From Teaching to Self-Reflective Practice. New York: The Guilford Press.
  • Zimmerman, B. J. (2001). Self-regulated learning and academic achievement: An overview and analysis. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: Theoretical perspectives (pp. 1-36). Mahwah, NJ : Lawrence Erlbaum Associates.
There are 50 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Emine Erktin This is me

Gürsu Aşık

Fahretdin Hasan Adagideli This is me

Merve Aşık This is me

Nazmi Erdoğan This is me

Şebnem Tekin This is me

Publication Date June 1, 2014
Published in Issue Year 2012 Volume: 1 Issue: 1

Cite

APA Erktin, E., Aşık, G., Adagideli, F. H., Aşık, M., et al. (2014). Matematik Eğitiminde Bilişsel ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği. MATDER Matematik Eğitimi Dergisi, 1(1), 41-51.
AMA Erktin E, Aşık G, Adagideli FH, Aşık M, Erdoğan N, Tekin Ş. Matematik Eğitiminde Bilişsel ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği. MATDER Matematik Eğitimi Dergisi. June 2014;1(1):41-51.
Chicago Erktin, Emine, Gürsu Aşık, Fahretdin Hasan Adagideli, Merve Aşık, Nazmi Erdoğan, and Şebnem Tekin. “Matematik Eğitiminde Bilişsel Ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği”. MATDER Matematik Eğitimi Dergisi 1, no. 1 (June 2014): 41-51.
EndNote Erktin E, Aşık G, Adagideli FH, Aşık M, Erdoğan N, Tekin Ş (June 1, 2014) Matematik Eğitiminde Bilişsel ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği. MATDER Matematik Eğitimi Dergisi 1 1 41–51.
IEEE E. Erktin, G. Aşık, F. H. Adagideli, M. Aşık, N. Erdoğan, and Ş. Tekin, “Matematik Eğitiminde Bilişsel ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği”, MATDER Matematik Eğitimi Dergisi, vol. 1, no. 1, pp. 41–51, 2014.
ISNAD Erktin, Emine et al. “Matematik Eğitiminde Bilişsel Ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği”. MATDER Matematik Eğitimi Dergisi 1/1 (June 2014), 41-51.
JAMA Erktin E, Aşık G, Adagideli FH, Aşık M, Erdoğan N, Tekin Ş. Matematik Eğitiminde Bilişsel ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği. MATDER Matematik Eğitimi Dergisi. 2014;1:41–51.
MLA Erktin, Emine et al. “Matematik Eğitiminde Bilişsel Ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği”. MATDER Matematik Eğitimi Dergisi, vol. 1, no. 1, 2014, pp. 41-51.
Vancouver Erktin E, Aşık G, Adagideli FH, Aşık M, Erdoğan N, Tekin Ş. Matematik Eğitiminde Bilişsel ve Bilişüstü Yaklaşımlar: Bir Hizmetiçi Eğitim Semineri Örneği. MATDER Matematik Eğitimi Dergisi. 2014;1(1):41-5.