Research Article
BibTex RIS Cite

Identification of the hemodynamic correlates of basic emotional states with a mobile functional near infrared spectroscopy system

Year 2022, , 159 - 166, 20.08.2022
https://doi.org/10.30565/medalanya.1120497

Abstract

Aim: The aim of this study was to evaluate the feasibility of a functional near infrared spectroscopy (fNIRS) system, for quantification of the similarities and differences in the spatial localization of cerebral hemodynamic activation, induced by visual presentation of neutral, negative and positive valence emotional stimuli.

Method: Thirteen healthy subjects viewed neutral, pleasant and unpleasant pictures from the International Affective Picture System (IAPS) database in a block design experiment while the prefrontal cortical hemodynamic changes induced by emotional stimuli were continuously recorded with a 20 channel fNIRS system that covered the forehead region.

Results: Negative valence pictures induced higher hemodynamic activity in right lateralized regions involving dorsolateral and orbitofrontal cortex, when compared to neutral and positive valence stimuli (pFDR<0.05). Each stimulus condition induced a distinct cortical activation pattern that could be identified with fNIRS.

Conclusion: Our findings support the notion that different basic emotions have distinct localization and separable hemodynamic correlates in the prefrontal cortex region, which can be detected with a mobile fNIRS system. The distinct cortical hemodynamic activity patterns associated with each emotional state show the potential of fNIRS technology for decoding and differentiating basic emotions objectively and real time for future clinical and daily life applications.     

References

  • 1. Strait M, Scheutz M. What we can and cannot (yet) do with functional near infrared spectroscopy. Front Neurosci. 2014;8:117. doi: 10.3389/fnins.2014.00117.
  • 2. Erdoğan SB, Yükselen G, Yegül MM, Usanmaz R, Kıran E, Derman O et al. Identification of impulsive adolescents with a functional near infrared spectroscopy (fNIRS) based decision support system. J Neural Eng. 2021;18(5). doi: 10.1088/1741-2552/ac23bb.
  • 3. Hoshi Y, Huang J, Kohri S, Iguchi Y, Naya M, Okamoto T, Ono S. Recognition of human emotions from cerebral blood flow changes in the frontal region: a study with event-related near-infrared spectroscopy. J Neuroimaging. 2011;21(2):e94-101. doi: 10.1111/j.1552-6569.2009.00454.x.
  • 4. Hong KS, Khan MJ. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review. Front Neurorobot. 2017;11:35. doi: 10.3389/fnbot.2017.00035.
  • 5. Erdoğan SB, Özsarfati E, Dilek B, Kadak KS, Hanoğlu L, Akın A. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. J Neural Eng. 2019;16(2):026029. doi: 10.1088/1741-2552/aafdca.
  • 6. Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921-35. doi: 10.1016/j.neuroimage.2012.03.049.
  • 7. Tak S, Ye JC. Statistical analysis of fNIRS data: a comprehensive review. Neuroimage. 2014;85 Pt 1:72-91. doi: 10.1016/j.neuroimage.2013.06.016.
  • 8. Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996;351(1346):1413-20. doi: 10.1098/rstb.1996.0125.
  • 9. Davidson RJ, Jackson DC, Kalin NH. Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychol Bull. 2000;126(6):890-909. doi: 10.1037/0033-2909.126.6.890.
  • 10. Herrmann MJ, Ehlis AC, Fallgatter AJ. Prefrontal activation through task requirements of emotional induction measured with NIRS. Biol Psychol. 2003;64(3):255-63. doi: 10.1016/s0301-0511(03)00095-4.
  • 11. Leon-Carrion J, Damas J, Izzetoglu K, Pourrezai K, Martín-Rodríguez JF, Barroso y et al. Differential time course and intensity of PFC activation for men and women in response to emotional stimuli: a functional near-infrared spectroscopy (fNIRS) study. Neurosci Lett. 2006;403(1-2):90-5. doi: 10.1016/j.neulet.2006.04.050.
  • 12. Yang H, Zhou Z, Liu Y, Ruan Z, Gong H, Luo Q, Lu Z. Gender difference in hemodynamic responses of prefrontal area to emotional stress by near-infrared spectroscopy. Behav Brain Res. 2007;178(1):172-6. doi: 10.1016/j.bbr.2006.11.039.
  • 13. Bradley MM, Lang PJ. The International Affective Picture System (IAPS) in the study of emotion and attention. In: Coan JA, Allen JJB, editors. Series in affective science. Handbook of emotion elicitation and assessment. New York: Oxford University Press; 2007. p. 29-46.
  • 14. Russell JA. Core affect and the psychological construction of emotion. Psychol Rev. 2003;110(1):145-72. doi: 10.1037/0033-295x.110.1.145.
  • 15. Ye JC, Tak S, Jang KE, Jung J, Jang J. NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage. 2009;44(2):428-47. doi: 10.1016/j.neuroimage.2008.08.036. 16. Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 2009;48(10):D280-98. doi: 10.1364/ao.48.00d280.
  • 17. Borod JC, Cicero BA, Obler LK, Welkowitz J, Erhan HM, Santschi C, et al. Right hemisphere emotional perception: evidence across multiple channels. Neuropsychology. 1998;12(3):446-58. doi: 10.1037//0894-4105.12.3.446.
  • 18. Balconi M, Grippa E, Vanutelli ME. What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing. Brain Cogn. 2015;95:67-76. doi: 10.1016/j.bandc.2015.02.001.
  • 19. Rolls ET. The functions of the orbitofrontal cortex. Brain Cogn. 2004;55(1):11-29. doi: 10.1016/S0278-2626(03)00277-X.
  • 20. Golkar A, Lonsdorf TB, Olsson A, Lindstrom KM, Berrebi J, Fransson P, et al. Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PLoS One. 2012;7(11):e48107. doi: 10.1371/journal.pone.0048107.
  • 21. Luu P, Flaisch T, Tucker DM. Medial frontal cortex in action monitoring. J Neurosci. 2000;20(1):464-9. doi: 10.1523/JNEUROSCI.20-01-00464.2000.
  • 22. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007;37(4):1083-90. doi: 10.1016/j.neuroimage.2007.02.041.
  • 23. George MS, Ketter TA, Parekh PI, Horwitz B, Herscovitch P, Post RM. Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry. 1995;152(3):341-51. doi: 10.1176/ajp.152.3.341.
  • 24. Geday J, Gjedde A. Attention, emotion, and deactivation of default activity in inferior medial prefrontal cortex. Brain Cogn. 2009;69(2):344-52. doi: 10.1016/j.bandc.2008.08.009.
  • 25. Hall GB, Witelson SF, Szechtman H, Nahmias C. Sex differences in functional activation patterns revealed by increased emotion processing demands. Neuroreport. 2004;15(2):219-23. doi: 10.1097/00001756-200402090-00001.

Temel Duygusal Durumların Hemodinamik Karşılıklarının Taşınabilir bir İşlevsel Yakın Kızılaltı Spektroskopi Sistemi ile Tanımlanması

Year 2022, , 159 - 166, 20.08.2022
https://doi.org/10.30565/medalanya.1120497

Abstract

Amaç: Bu çalışmanın amacı, bir işlevsel yakın kızılaltı spektroskopi (İYKAS) sisteminin nötral, olumsuz ve olumlu değerlikli duygusal uyarıların sebep oldukları beyin hemodinamik etkinliklerinin uzamsal yerleşimlerindeki benzerlik ve farklılıkları niceliklendirmedeki uygunluğunu test etmektir.

Yöntemler: 13 sağlıklı denek, Uluslarası Duygusal Resim Sistemi (IAPS) veritabanından alınan nötral, hoşa giden ve hoşa gitmeyen içerikli resimleri blok bir deney tasarımı içerisinde izlerlerken, duygusal uyaranların sebep olduğu prefrontal kortikal hemodinamik değişimler alın bölgesine yerleştirilen 20 kanallı bir İYKAS sistemi ile ölçüldü.

Bulgular: Olumsuz değerlikli resimler dorsolateral ve orbitofrontal korteksi kapsayan sağ lateral bölgelerde olumlu ve nötral değerlikli resimlere göre daha yüksek hemodinamik etkinliğe sebep oldu (pFDR<0.05). Her uyarı durumu, İYKAS ile tanımlanabilen, belirgin ve ayrışabilir bir kortikal hemodinamik etkinlik örüntüsüne sebep oldu.

Sonuç: Bulgularımız, farklı temel duyguların prefrontal korteks bölgesinde taşınabilir bir İYKAS sistemi ile ölçülebilen, ayrışabilir ve farklı yerleşime sahip hemodinamik karşılıkları oldukları görüşünü desteklemektedir. Farklı duygusal durumlar ile ilişkili farklı kortikal hemodinamik etkinlik örüntülerinin bulunması, İYKAS teknolojisinin gelecek sağlık ve gündelik hayat uygulamalarında, duyguları nesnel ve gerçek zamanlı çözümleme potansiyelini göstermektedir.

References

  • 1. Strait M, Scheutz M. What we can and cannot (yet) do with functional near infrared spectroscopy. Front Neurosci. 2014;8:117. doi: 10.3389/fnins.2014.00117.
  • 2. Erdoğan SB, Yükselen G, Yegül MM, Usanmaz R, Kıran E, Derman O et al. Identification of impulsive adolescents with a functional near infrared spectroscopy (fNIRS) based decision support system. J Neural Eng. 2021;18(5). doi: 10.1088/1741-2552/ac23bb.
  • 3. Hoshi Y, Huang J, Kohri S, Iguchi Y, Naya M, Okamoto T, Ono S. Recognition of human emotions from cerebral blood flow changes in the frontal region: a study with event-related near-infrared spectroscopy. J Neuroimaging. 2011;21(2):e94-101. doi: 10.1111/j.1552-6569.2009.00454.x.
  • 4. Hong KS, Khan MJ. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review. Front Neurorobot. 2017;11:35. doi: 10.3389/fnbot.2017.00035.
  • 5. Erdoğan SB, Özsarfati E, Dilek B, Kadak KS, Hanoğlu L, Akın A. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. J Neural Eng. 2019;16(2):026029. doi: 10.1088/1741-2552/aafdca.
  • 6. Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921-35. doi: 10.1016/j.neuroimage.2012.03.049.
  • 7. Tak S, Ye JC. Statistical analysis of fNIRS data: a comprehensive review. Neuroimage. 2014;85 Pt 1:72-91. doi: 10.1016/j.neuroimage.2013.06.016.
  • 8. Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996;351(1346):1413-20. doi: 10.1098/rstb.1996.0125.
  • 9. Davidson RJ, Jackson DC, Kalin NH. Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychol Bull. 2000;126(6):890-909. doi: 10.1037/0033-2909.126.6.890.
  • 10. Herrmann MJ, Ehlis AC, Fallgatter AJ. Prefrontal activation through task requirements of emotional induction measured with NIRS. Biol Psychol. 2003;64(3):255-63. doi: 10.1016/s0301-0511(03)00095-4.
  • 11. Leon-Carrion J, Damas J, Izzetoglu K, Pourrezai K, Martín-Rodríguez JF, Barroso y et al. Differential time course and intensity of PFC activation for men and women in response to emotional stimuli: a functional near-infrared spectroscopy (fNIRS) study. Neurosci Lett. 2006;403(1-2):90-5. doi: 10.1016/j.neulet.2006.04.050.
  • 12. Yang H, Zhou Z, Liu Y, Ruan Z, Gong H, Luo Q, Lu Z. Gender difference in hemodynamic responses of prefrontal area to emotional stress by near-infrared spectroscopy. Behav Brain Res. 2007;178(1):172-6. doi: 10.1016/j.bbr.2006.11.039.
  • 13. Bradley MM, Lang PJ. The International Affective Picture System (IAPS) in the study of emotion and attention. In: Coan JA, Allen JJB, editors. Series in affective science. Handbook of emotion elicitation and assessment. New York: Oxford University Press; 2007. p. 29-46.
  • 14. Russell JA. Core affect and the psychological construction of emotion. Psychol Rev. 2003;110(1):145-72. doi: 10.1037/0033-295x.110.1.145.
  • 15. Ye JC, Tak S, Jang KE, Jung J, Jang J. NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage. 2009;44(2):428-47. doi: 10.1016/j.neuroimage.2008.08.036. 16. Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 2009;48(10):D280-98. doi: 10.1364/ao.48.00d280.
  • 17. Borod JC, Cicero BA, Obler LK, Welkowitz J, Erhan HM, Santschi C, et al. Right hemisphere emotional perception: evidence across multiple channels. Neuropsychology. 1998;12(3):446-58. doi: 10.1037//0894-4105.12.3.446.
  • 18. Balconi M, Grippa E, Vanutelli ME. What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing. Brain Cogn. 2015;95:67-76. doi: 10.1016/j.bandc.2015.02.001.
  • 19. Rolls ET. The functions of the orbitofrontal cortex. Brain Cogn. 2004;55(1):11-29. doi: 10.1016/S0278-2626(03)00277-X.
  • 20. Golkar A, Lonsdorf TB, Olsson A, Lindstrom KM, Berrebi J, Fransson P, et al. Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PLoS One. 2012;7(11):e48107. doi: 10.1371/journal.pone.0048107.
  • 21. Luu P, Flaisch T, Tucker DM. Medial frontal cortex in action monitoring. J Neurosci. 2000;20(1):464-9. doi: 10.1523/JNEUROSCI.20-01-00464.2000.
  • 22. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007;37(4):1083-90. doi: 10.1016/j.neuroimage.2007.02.041.
  • 23. George MS, Ketter TA, Parekh PI, Horwitz B, Herscovitch P, Post RM. Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry. 1995;152(3):341-51. doi: 10.1176/ajp.152.3.341.
  • 24. Geday J, Gjedde A. Attention, emotion, and deactivation of default activity in inferior medial prefrontal cortex. Brain Cogn. 2009;69(2):344-52. doi: 10.1016/j.bandc.2008.08.009.
  • 25. Hall GB, Witelson SF, Szechtman H, Nahmias C. Sex differences in functional activation patterns revealed by increased emotion processing demands. Neuroreport. 2004;15(2):219-23. doi: 10.1097/00001756-200402090-00001.
There are 24 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Sinem Burcu Erdoğan 0000-0001-6028-3477

Publication Date August 20, 2022
Submission Date May 24, 2022
Acceptance Date July 14, 2022
Published in Issue Year 2022

Cite

Vancouver Erdoğan SB. Identification of the hemodynamic correlates of basic emotional states with a mobile functional near infrared spectroscopy system. Acta Med. Alanya. 2022;6(2):159-66.

9705 

Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.