Review
BibTex RIS Cite

New Mediators and Growth Factors Affecting Pterium Growth

Year 2017, , 99 - 102, 15.07.2017
https://doi.org/10.30565/medalanya.294045

Abstract











Pterjium is an ocular surface disorder and is a pathologic result of
corneal invasion of the fibro-vascular proliferation of the bulb conjunctiva in
the region corresponding to the lid space. Pterjium is a disease with high
rates of recurrence after surgery. Nowadays, along with several new techniques
that are used to prevent recurrence, antineoplastics are also used to stop the
growth. Various growth factors and mediators, like some neoplasms, have been
found to be effective in pterygium growth, invasion and relapse. In addition to
growth factors such as stem cell factor and VEGF, an increase in histamine,
carbonic anhydrase activity, in number of eph B4, and in nestin release was
found while a decrease in IGFBP3 release was found. Studies are currently
underway to stop the growth of pterygium and prevent recurrence.

References

  • 1. Gans L: Surgical Treatment of Pterygium. In: Focal Points. 12. American Academy of Ophthalmology, San Francisco, 1996.
  • 2. Cameron ME: The treatment of beta irradiation necrosis of the sclera. Aust J Ophthalmol 1978;6:86.
  • 3. Di Girolamo N, Chui J, Coroneo MT and Wakefield D: Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res 2004;23: 195-228.
  • 4. Viagoftis H, Worobec AS, Metcalfe DD. The protooncogene c-kit and c-kit ligand in human disease. J Allergy Clin Immunol 1997;100:435–40.
  • 5. Longley BJ Jr, Morganroth GS, Tyrrell L. Altered metabolism of mast-cell growth factor (c-kit ligand) in cutaneous mastocytosis. N Engl J Med 1993;328:1302–7.
  • 6. Bankl HC, Radaszkiewicz T, Klappacher GW. Increase and redistribution of cardiac mast cells in auricular thrombosis. Circulation 1995;91:275–83.
  • 7. Kim YK, Nakagawa N, Nakano K, Sulakvelidze I, Dolovich J, Denburg J. Stem cell factor in nasal polyposis and allergic rhinitis: increased expression by structural cells is suppressed by in vivo topical corticosteroids. J Allergy Clin Immunol 1997;100:389–99.
  • 8. Mori A, Nakayama K, Suzuki J, Nikaido T, Isobe M, Fujii S. Analysis of stem cell factor for mast cell proliferation in the human myometrium. Mol Hum Reprod 1997;3:411–8.
  • 9. Yamamoto T, Katayama I, Nishioka K. Expression of stem cell factor in basal cell carcinoma. Br J Dermatol 1997; 137:709–13.
  • 10. Nakagami T, Watanabe I, Murakami A, Okisaka S Ebihara N. Expression of Stem Cell Factor in Pterygium. Jpn J Ophthalmol.2000; 44: 193–197.
  • 11. Hwa V, Oh Y, Rosenfeld RG. The Insulin-Like Growth Factor-Binding Protein (IGFBP) Superfamily Endocr Rev. 1999;20(6):761-87.
  • 12. Solomon A, Grueterich M, Li DQ, Meller Lee,S B, Tseng, S C et al. Overexpression of Insulin-like growth factor-binding protein-2 in pterygium body fibroblasts. Invest Ophthalmol 2003;44:573–80.
  • 13. Van Kleffens M, Groffen CA, Dits NF, Lindenbergh-Kortleve DJ, Schuller PAG, Bradshaw SL, Van Neck J W. Generation of antisera to Mouse insulin-like growth factor binding proteins (IGFBP)-1 to -6: comparison of IGFBP protein and messenger ribonucleic acid localization in the Mouse embryo. Endocrinology 1999;140:5944–52.
  • 14. Gucev ZS, Oh Y, Kelley KM, Rozenfeld RG. Insulin-like growth factor binding protein 3 mediates retinoic acid- and transforming growth factor beta2-induced growth inhibition in human breast cancer cells. Cancer Res 1996;56:1545–50.
  • 15. Benbassat CA, Lazarus DD, Cichy SB, et al. Interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor alpha (TNF alpha) regulate insulin-like growth factor binding protein-1(IGFBP-1) levels and mRNA abundance in vivo and in vitro. Horm Metab Res 1999;31:209–15.
  • 16. Buckbinder L, Talbott R, Velasco-Miguel S, Tekenaka I, Faha B,Seizinger FB, Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995;377:646–9.
  • 17. Wong YW, Chew J, H Yang ,Tan DTH, Beuerman R. Expression of insulin-like growth factor binding protein-3 in pterygium tissue. Br J Ophthalmol 2006; 90:769–772.
  • 18. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Discov.2008;7(2):168-181.
  • 19. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995;64:375-401.
  • 20. Abe S, Nakao T, Yoshimoto T, Parkkila S, Murakami G, Cho BH. Expression of carbonic anhydrase in the fetal eye and extra-ocular tissues. Okojimas Folia Anot Jpn.2013;90(3):59-68.
  • 21. Yang Q, Chen ZY, Liu XP, Wu KL. Overexpression of carbonicanhydrase 1 in pterygium. Int J Opthalmol. 2016;9(6):931-2.
  • 22. M. Cataldi, F. Borriello, F. Granata, L. Annunziato, G.Marone, Histamine receptors and antihistamines: fromdiscoveryto clinical applications. Chemical Immunology and Allergy, 2014; 100:214–226, 2014.
  • 23. W. J. Adams, J. A. Lawson, and D. L. Morris, Cimetidine inhibits in vivo growth of human colon cancer and reverses histamine stimulated in vitro and in vivo growth. BMJ 1994:35;1632–36.
  • 24. E. Stoyanov,M.Uddin,D.Mankuta, S. M. Dubinett, and F. Levi- Schaffer, “Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells,” Lung Cancer, 2012;75: 38–44.
  • 25. Hern´andez-Angeles A , Soria-Jasso E, Ortega A, J.-A. Arias-Monta JA, Histamine H 1 receptor activation stimulates mitogenesis in human astrocytoma U373 MG cells. Journal of Neuro-Oncology, 2001;55:l81–89.
  • 26. K. Khazaie, N. R. Blatner, M. W. Khan.The significant role of mast cells in cancer. Cancer and Metastasis Reviews,2011;30:45–60.
  • 27. A. Leonardi, M. Radice, I. A. Fregona, M. Plebani, G. Abatangelo, A. G. Secchi. Histamine effects on conjunctival fibroblasts frompatients with vernal conjunctivitis. Experimental Eye Research, 1999; 68:739–746.
  • 28. T. Nakagami, A. Murakami, S. Okisaka, N. Ebihara, Mast cells in pterygium: number and phenotype. Japanese Journal of Ophthalmology, 1999;43:75–79.
  • 29. Qin Z, Fu Q, Zhang L, Yin H, Jin X, Tang Q, Lyu D, Yao K. Proliferative Effects of Histamine on Primary Human Pterygium Fibroblasts. Mediators of Inflammation 2016.
  • 30. Aspiotis M, Tsanou E, Gorezis S, Ioachim E, Skyrlas A, Stefaniotou M, Malamou-Mitsi V. Angiogenesis inpterygium: study of microvessel density, vascular endothelial growth factor, and trombospondin-1. Eye 2007;21:1095–1101.
  • 31. Bianchi E, Scarinci F, Grande C, Plateroti R, Plateroti P, Plateroti AM, Artico M. Immunohistochemical profile of VEGF, TGF-b and PGE2 in human pterygium and normal conjunctiva: experimental study and review of the literature. Int J Immunopathol Pharmacol 2012;25(3):607–615.
  • 32. Liang K, Jiang Z, Zhao B, Shen B, Huang J, Tao L. The expression of vascular endothelial growth factor in mast cells promotes the neovascularization of human pterygia. Br J Ophthalmol 2012;96(9):1246–1251.
  • 33. Park CY, Choi JS, Lee SJ, et al. Cycloxigenase-2-expressing macrophages in human pterygium co-express vascular endothelial growth factor. Mol Vision 2011;17:3468–3480.
  • 34. Hoyama E, Hata ViveirosMM, Shiratori C, Elgui de Oliveira D, Padovani CR, Selva D, Schellini SA. Expression of Vascular Endothelial Growth Factor (VEGF) in Macrophages, Fibroblasts, and Endothelial Cells in Pterygium Treated with 5-Fluorouracil. Seminars in Ophthalmology, 2015; 30(3): 171–176.
  • 35. Klein R. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol 2004;16:580–9. 36. Palmer A, Klein R. Multiple roles of ephrins in morphogenesis,neuronal networking, and brain function. Genes Dev2003;17:1429–50.
  • 37. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998;93:741–53.
  • 38. Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 1999;4:403–14.
  • 39. He S, Ding Y, Zhou J, Krasnoperov V, Zozulya S, Kumar SR, Ryan SJ, Gill PS and Hinton DR. Soluble EphB4 regulates choroidal endothelial cell function and inhibits laser-induced choroi¬dal neovascularization. Invest Ophthalmol Vis Sci 2005; 46: 4772-4779.
  • 40. Huang X, Yamada Y, Kidoya H, Naito H, Naga¬hama Y, Kong L, Katoh SY, Li WL, Ueno M and Takakura N. EphB4 overexpression in B16 melanoma cells affects arterial-venous pat¬terning in tumor angiogenesis. Cancer Res 2007; 67: 9800-9808.
  • 41. Zamora DO, Davies MH, Planck SR, Rosen¬baum JT and Powers MR. Soluble forms of Eph¬rinB2 and EphB4 reduce retinal neovascular¬ization in a model of proliferative retinopathy. Invest Ophthalmol Vis Sci 2005; 46: 2175-2182.
  • 42. Djokovic D, Trindade A, Gigante J, Badenes M, Silva L, Liu R, Li X, Gong M, Krasnoperov V, Gill PS and Duarte A. Combination of Dll4/Notch and Ephrin-B2/EphB4 targeted therapy is highly effective in disrupting tumor angiogene¬sis. BMC Cancer 2010; 10: 641.
  • 43. Xue C, ChenY, Huang Z, GeY, Wang H, Wang J. EphB4 expression in pterygium is associated with microvessel density Int J Clin Exp Med 2014;7(11):4008-4015.
  • 44. Wen D, Ni L, You L, Zhang L, Gu Y, Hao CM, Chen J. Upregulation of nestin in proximal tubules may participate in cell migration during renal repair. Am J Physiol Renal Physiol2012; 303: 1534–1544.
  • 45. Royal I, Huot J. Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by vascular endothelial growth factor (VEGF)- induced inhibition of miR-196a expression. J Biol Chem 2012;287: 30541– 30551.
  • 46. Liang Z, Wang Z, Chen H, Li C, Zhou T, Yang Z, Yang X, Yang Y, Gao G, Cai1 W. Nestin-mediated cytoskeletal remodeling in endothelial cells: novel mechanistic insight into VEGF-induced cell migration in angiogenesis. Am J Physiol Cell Physiol 2015;308: 349–358.
  • 47. Chen HL, Yuh CH, Wu KK. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis. PLoS One. 2010;5(2):9318.
  • 48. Ishikawa K, Yoshida S, Kadota K, Nakamura T, Niiro H, Arakawa S, Yoshida A, Akashi K, Ishibashi T. Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2010;51(8):4307–4319.
  • 49. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–4320.
  • 50. Wen D, Wang H, BC, Liu H. Increased expression of nestin in human pterygial epithelium. Int J Ophthalmol. 2013; 6(3): 259–263.

Pterjium Büyümesinde Etkili Yeni Mediatörler Ve Büyüme Faktörleri

Year 2017, , 99 - 102, 15.07.2017
https://doi.org/10.30565/medalanya.294045

Abstract











Pterjium, oküler yüzey bozukluğu olup kapak aralığına uyan bölgede
bulber konjonktivanın fibro¬vasküler proliferasyonunun korneayı invaze etmesi
sonucu oluşan bir patolojidir. Pterjium, cerrahi sonrası nüksün yüksek oranlara
ulaştığı bir hastalıktır. Günümüzde nüks oranlarını daha aşağılara çekmek
amacıyla birçok yeni cerrahi teknik yanında büyümesini durdurmak için
antineoblastikler kullanılmaktadır. Çeşitli büyüme faktörleri ve mediatörlerin
bazı neoplazmlar gibi pterjium büyümesi, invazyonu ve nüksünde etkili olduğu
bulunmuştur. Kök hücre faktörü ve VEGF gibi büyüme faktörlerinin yanında,
histaminde, karbonik anhidraz aktivitesinde, eph B4 sayısında ve nestin
salınımında artış bulunurken, IGFBP3 salınımında ise azalma bulunmuştur.
Pterjimun büyümesinin durdurulması ve nüksünün önlenmesi için halen çalışmalar
yapılmaktadır.

References

  • 1. Gans L: Surgical Treatment of Pterygium. In: Focal Points. 12. American Academy of Ophthalmology, San Francisco, 1996.
  • 2. Cameron ME: The treatment of beta irradiation necrosis of the sclera. Aust J Ophthalmol 1978;6:86.
  • 3. Di Girolamo N, Chui J, Coroneo MT and Wakefield D: Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res 2004;23: 195-228.
  • 4. Viagoftis H, Worobec AS, Metcalfe DD. The protooncogene c-kit and c-kit ligand in human disease. J Allergy Clin Immunol 1997;100:435–40.
  • 5. Longley BJ Jr, Morganroth GS, Tyrrell L. Altered metabolism of mast-cell growth factor (c-kit ligand) in cutaneous mastocytosis. N Engl J Med 1993;328:1302–7.
  • 6. Bankl HC, Radaszkiewicz T, Klappacher GW. Increase and redistribution of cardiac mast cells in auricular thrombosis. Circulation 1995;91:275–83.
  • 7. Kim YK, Nakagawa N, Nakano K, Sulakvelidze I, Dolovich J, Denburg J. Stem cell factor in nasal polyposis and allergic rhinitis: increased expression by structural cells is suppressed by in vivo topical corticosteroids. J Allergy Clin Immunol 1997;100:389–99.
  • 8. Mori A, Nakayama K, Suzuki J, Nikaido T, Isobe M, Fujii S. Analysis of stem cell factor for mast cell proliferation in the human myometrium. Mol Hum Reprod 1997;3:411–8.
  • 9. Yamamoto T, Katayama I, Nishioka K. Expression of stem cell factor in basal cell carcinoma. Br J Dermatol 1997; 137:709–13.
  • 10. Nakagami T, Watanabe I, Murakami A, Okisaka S Ebihara N. Expression of Stem Cell Factor in Pterygium. Jpn J Ophthalmol.2000; 44: 193–197.
  • 11. Hwa V, Oh Y, Rosenfeld RG. The Insulin-Like Growth Factor-Binding Protein (IGFBP) Superfamily Endocr Rev. 1999;20(6):761-87.
  • 12. Solomon A, Grueterich M, Li DQ, Meller Lee,S B, Tseng, S C et al. Overexpression of Insulin-like growth factor-binding protein-2 in pterygium body fibroblasts. Invest Ophthalmol 2003;44:573–80.
  • 13. Van Kleffens M, Groffen CA, Dits NF, Lindenbergh-Kortleve DJ, Schuller PAG, Bradshaw SL, Van Neck J W. Generation of antisera to Mouse insulin-like growth factor binding proteins (IGFBP)-1 to -6: comparison of IGFBP protein and messenger ribonucleic acid localization in the Mouse embryo. Endocrinology 1999;140:5944–52.
  • 14. Gucev ZS, Oh Y, Kelley KM, Rozenfeld RG. Insulin-like growth factor binding protein 3 mediates retinoic acid- and transforming growth factor beta2-induced growth inhibition in human breast cancer cells. Cancer Res 1996;56:1545–50.
  • 15. Benbassat CA, Lazarus DD, Cichy SB, et al. Interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor alpha (TNF alpha) regulate insulin-like growth factor binding protein-1(IGFBP-1) levels and mRNA abundance in vivo and in vitro. Horm Metab Res 1999;31:209–15.
  • 16. Buckbinder L, Talbott R, Velasco-Miguel S, Tekenaka I, Faha B,Seizinger FB, Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995;377:646–9.
  • 17. Wong YW, Chew J, H Yang ,Tan DTH, Beuerman R. Expression of insulin-like growth factor binding protein-3 in pterygium tissue. Br J Ophthalmol 2006; 90:769–772.
  • 18. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Discov.2008;7(2):168-181.
  • 19. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995;64:375-401.
  • 20. Abe S, Nakao T, Yoshimoto T, Parkkila S, Murakami G, Cho BH. Expression of carbonic anhydrase in the fetal eye and extra-ocular tissues. Okojimas Folia Anot Jpn.2013;90(3):59-68.
  • 21. Yang Q, Chen ZY, Liu XP, Wu KL. Overexpression of carbonicanhydrase 1 in pterygium. Int J Opthalmol. 2016;9(6):931-2.
  • 22. M. Cataldi, F. Borriello, F. Granata, L. Annunziato, G.Marone, Histamine receptors and antihistamines: fromdiscoveryto clinical applications. Chemical Immunology and Allergy, 2014; 100:214–226, 2014.
  • 23. W. J. Adams, J. A. Lawson, and D. L. Morris, Cimetidine inhibits in vivo growth of human colon cancer and reverses histamine stimulated in vitro and in vivo growth. BMJ 1994:35;1632–36.
  • 24. E. Stoyanov,M.Uddin,D.Mankuta, S. M. Dubinett, and F. Levi- Schaffer, “Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells,” Lung Cancer, 2012;75: 38–44.
  • 25. Hern´andez-Angeles A , Soria-Jasso E, Ortega A, J.-A. Arias-Monta JA, Histamine H 1 receptor activation stimulates mitogenesis in human astrocytoma U373 MG cells. Journal of Neuro-Oncology, 2001;55:l81–89.
  • 26. K. Khazaie, N. R. Blatner, M. W. Khan.The significant role of mast cells in cancer. Cancer and Metastasis Reviews,2011;30:45–60.
  • 27. A. Leonardi, M. Radice, I. A. Fregona, M. Plebani, G. Abatangelo, A. G. Secchi. Histamine effects on conjunctival fibroblasts frompatients with vernal conjunctivitis. Experimental Eye Research, 1999; 68:739–746.
  • 28. T. Nakagami, A. Murakami, S. Okisaka, N. Ebihara, Mast cells in pterygium: number and phenotype. Japanese Journal of Ophthalmology, 1999;43:75–79.
  • 29. Qin Z, Fu Q, Zhang L, Yin H, Jin X, Tang Q, Lyu D, Yao K. Proliferative Effects of Histamine on Primary Human Pterygium Fibroblasts. Mediators of Inflammation 2016.
  • 30. Aspiotis M, Tsanou E, Gorezis S, Ioachim E, Skyrlas A, Stefaniotou M, Malamou-Mitsi V. Angiogenesis inpterygium: study of microvessel density, vascular endothelial growth factor, and trombospondin-1. Eye 2007;21:1095–1101.
  • 31. Bianchi E, Scarinci F, Grande C, Plateroti R, Plateroti P, Plateroti AM, Artico M. Immunohistochemical profile of VEGF, TGF-b and PGE2 in human pterygium and normal conjunctiva: experimental study and review of the literature. Int J Immunopathol Pharmacol 2012;25(3):607–615.
  • 32. Liang K, Jiang Z, Zhao B, Shen B, Huang J, Tao L. The expression of vascular endothelial growth factor in mast cells promotes the neovascularization of human pterygia. Br J Ophthalmol 2012;96(9):1246–1251.
  • 33. Park CY, Choi JS, Lee SJ, et al. Cycloxigenase-2-expressing macrophages in human pterygium co-express vascular endothelial growth factor. Mol Vision 2011;17:3468–3480.
  • 34. Hoyama E, Hata ViveirosMM, Shiratori C, Elgui de Oliveira D, Padovani CR, Selva D, Schellini SA. Expression of Vascular Endothelial Growth Factor (VEGF) in Macrophages, Fibroblasts, and Endothelial Cells in Pterygium Treated with 5-Fluorouracil. Seminars in Ophthalmology, 2015; 30(3): 171–176.
  • 35. Klein R. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol 2004;16:580–9. 36. Palmer A, Klein R. Multiple roles of ephrins in morphogenesis,neuronal networking, and brain function. Genes Dev2003;17:1429–50.
  • 37. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998;93:741–53.
  • 38. Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 1999;4:403–14.
  • 39. He S, Ding Y, Zhou J, Krasnoperov V, Zozulya S, Kumar SR, Ryan SJ, Gill PS and Hinton DR. Soluble EphB4 regulates choroidal endothelial cell function and inhibits laser-induced choroi¬dal neovascularization. Invest Ophthalmol Vis Sci 2005; 46: 4772-4779.
  • 40. Huang X, Yamada Y, Kidoya H, Naito H, Naga¬hama Y, Kong L, Katoh SY, Li WL, Ueno M and Takakura N. EphB4 overexpression in B16 melanoma cells affects arterial-venous pat¬terning in tumor angiogenesis. Cancer Res 2007; 67: 9800-9808.
  • 41. Zamora DO, Davies MH, Planck SR, Rosen¬baum JT and Powers MR. Soluble forms of Eph¬rinB2 and EphB4 reduce retinal neovascular¬ization in a model of proliferative retinopathy. Invest Ophthalmol Vis Sci 2005; 46: 2175-2182.
  • 42. Djokovic D, Trindade A, Gigante J, Badenes M, Silva L, Liu R, Li X, Gong M, Krasnoperov V, Gill PS and Duarte A. Combination of Dll4/Notch and Ephrin-B2/EphB4 targeted therapy is highly effective in disrupting tumor angiogene¬sis. BMC Cancer 2010; 10: 641.
  • 43. Xue C, ChenY, Huang Z, GeY, Wang H, Wang J. EphB4 expression in pterygium is associated with microvessel density Int J Clin Exp Med 2014;7(11):4008-4015.
  • 44. Wen D, Ni L, You L, Zhang L, Gu Y, Hao CM, Chen J. Upregulation of nestin in proximal tubules may participate in cell migration during renal repair. Am J Physiol Renal Physiol2012; 303: 1534–1544.
  • 45. Royal I, Huot J. Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by vascular endothelial growth factor (VEGF)- induced inhibition of miR-196a expression. J Biol Chem 2012;287: 30541– 30551.
  • 46. Liang Z, Wang Z, Chen H, Li C, Zhou T, Yang Z, Yang X, Yang Y, Gao G, Cai1 W. Nestin-mediated cytoskeletal remodeling in endothelial cells: novel mechanistic insight into VEGF-induced cell migration in angiogenesis. Am J Physiol Cell Physiol 2015;308: 349–358.
  • 47. Chen HL, Yuh CH, Wu KK. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis. PLoS One. 2010;5(2):9318.
  • 48. Ishikawa K, Yoshida S, Kadota K, Nakamura T, Niiro H, Arakawa S, Yoshida A, Akashi K, Ishibashi T. Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2010;51(8):4307–4319.
  • 49. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–4320.
  • 50. Wen D, Wang H, BC, Liu H. Increased expression of nestin in human pterygial epithelium. Int J Ophthalmol. 2013; 6(3): 259–263.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Surgery
Journal Section Review
Authors

Leyla Eryiğit Eroğul

Publication Date July 15, 2017
Submission Date February 23, 2017
Acceptance Date April 2, 2017
Published in Issue Year 2017

Cite

Vancouver Eryiğit Eroğul L. Pterjium Büyümesinde Etkili Yeni Mediatörler Ve Büyüme Faktörleri. Acta Med. Alanya. 2017;1(2):99-102.

9705 

Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.