Research Article
BibTex RIS Cite

Lokal İleri Evre Prostat Kanserinde Maksimal Androjen Blokaj Tedavisinin Hematolojik, Biyokimyasal Ve Kemik Yoğunluğu Parametreleri Üzerine Etkileri

Year 2018, Volume: 2 Issue: 3, 182 - 187, 13.11.2018
https://doi.org/10.30565/medalanya.407858

Abstract

Amaç: Bu çalışmanın amacı, lokal olarak ilerlemiş
prostat kanserinde maksimal androjen
blokajı
tedavisinin (MABT) hemoglobin (Hb) ve hematokrit (Htc) değerleri ile açlık kan
şekeri (AKŞ), serum lipid değerleri ve kemik mineral yoğunluğu (KMD)
üzerindeki
  etkisini kontrol etmektir.

Hastalar ve Yöntemler: MABT ile tedavi edilen 39 hastanın
başlangıç ve onikinci aydaki hemoglobin, hematokrit, açlık kan şekeri, total
kolesterol (tChol), trigliserit (TG), yüksek yoğunluklu lipoprotein (HDL),
düşük yoğunluklu lipoprotein (LDL) ve omurga KMD değerleri kaydedildi. İlk ve
onikinci aydaki değerlerin istatistiksel karşılaştırmaları yapıldı.

Bulgular:  Bir
yıllık MABT sonrası Hb ve KMD değerlerinde istatistiksel olarak anlamlı azalma
kaydedildi. Öte yandan, TG, tChol, LDL, HDL ve AKŞ değerleri istatistiksel olarak
anlamlı bir artış gösterdi. Hb düzeyleri önemli ölçüde azalmış olmasına rağmen,
hastalarımızın hiçbirinde anemi belirtileri gelişmedi. Tedaviden önce FBG
seviyeleri 110 mg / dl'nin altında olan 37 hastanın 14'ü tedavinin onikinci
ayında 110 mg / dl'nin üzerine çıktı. Yedi hastada tedaviden sonra diyabetes
mellitus (DM) gelişti. Dahası, T skoru değerlendirmesi 4 hastada yeni gelişen
osteoporozu ortaya koymuştur. Osteoporoz gelişen tüm hastaların tedaviden önce
osteopenik T skoru değerleri vardı. Hiç bir hastamızda kemik kırığı oluşmadı.











Sonuç:
Çalışmamız MABT bağlı AKŞ artışını göstermektedir. KMD değerindeki azalma, daha
önce osteopenik olan hastalarda daha yüksektir. Kemik kırığı ve anemi
semptomlarının olmaması, MABT ile ilgili erken verilerin değerlendirilmesinin
bir sonucu olarak düşünülebilir
   

References

  • 1. Griffin JE, Wilson JD. Disorders of the testis and the male reproductive tract. In: Wilson JD editor. Williams Textbook of Endocrinology. Philadelphia: Saunders Company;1998. P. 819-75.
  • 2. Akdoğan B, Özen H. Benign prostatic hypertrophy and prostate cancer after testosterone replacement therapy. Bull Urooncol. 2006;5:3-6.
  • 3. Labrie F. Medical castration with LHRH agonists: 25 years later with major benefits achieved on survival in prostate cancer. J Androl. 2004;25:305–13.
  • 4. Huggins C, Stevens RE Jr, Hodges CV. Studies on prostate cancer. II. The effect of castration on advanced carcinoma of the prostate gland. Arch Surg 1941;43:209-23.
  • 5. Iversen P, Tyrrell CJ, Kaisary AV, Anderson JB, Van Poppel H, Tammela TL, et al. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of follow up. J Urol. 2000;164:1579–82.
  • 6. Mottet N, Prayer-Galetti T, Hammerer P, Kattan MW, Tunn U. Optimizing outcomes and quality of life in the hormonal treatment of prostate cancer. BJU International. 2006;98(1):20-7.
  • 7. Schwandt A, Garcia JA. Complications of androgen deprivation therapy in prostate cancer. CurrOpin Urol. 2009;19(3):322-6.
  • 8. Krugh M, Langaker MD. Dual Energy Xray Absorptiometry (DEXA) [Updated 2018 Jul 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519042/
  • 9. Strum SB, McDermed JE,Scholz MC, Johnson H, Tisman G.Anaemia associated with androgen deprivation in patients with prostate cancer receiving combined hormone blockade. Br J Urol. 1997;79:933-41.
  • 10. Beer TM, Tangen CM, Bland LB, Hussain M, Goldman BH, DeLoughery TG, et al. The prognostic value of hemoglobin change after initiating androgen‐deprivation therapy for newly diagnosed metastatic prostate cancer. Cancer. 2006;107(3):489-96.
  • 11. Bogdanos J, Karamanolakis D, Milathianakis C, Repousis P, Tsintavis A, Koutsilieris M. Combined androgen blockade-induced anemia in prostate cancer patients without bone involvement. Anticancer research. 2002;23:1757-62.
  • 12. Basaria S, Muller DC, Carducci MA, Egan J, Dobs AS. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen deprivation therapy. Cancer. 2006;106:581–8.
  • 13. Keating NL, O’Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J ClinOncol. 2006;24:4448-56.
  • 14. Sadeka S, Milena BB, Shehzad B. Androgen deprivation therapy in prostate cancer and metabolic risk for atherosclerosis. J Clin Endocrinol Metab. 2008;93(6):2042-9.
  • 15. Dockery F, Bulpitt CJ, Agarwal S, Donaldson M, Rajkumar C. Testosterone suppression in men with prostate cancer leads to an increase in arterial stiffness and hyperinsulinaemia. Clin Sci. 2003;104:195–201.
  • 16. von Eckardstein A, Kliesch S, Nieschlag E, Chirazi A, Assmann G, Behre HM. Suppression of Endogenous Testosterone in Young Men Increases Serum Levels of High Density Lipoprotein Subclass Lipoprotein AI and Lipoprotein(a) 1. J Clin Endocrinol Metab. 1997;82(10):3367-72.
  • 17. Kumar RJ. Adverse events associated with hormonal therapy for prostate cancer. Rev Urol. 2005;7 Suppl 5:37-43.
  • 18. Smith JC, Bennett S, Evans LM, Kynaston HG, Parmar M, Mason MD, et al. The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. J Clin Endocrinol Metab. 2001;86:4261–7.
  • 19. Roayaei M, Ghasemi S. Effect of androgen deprivation therapy on cardiovascular risk factors in prostate cancer. J Res Med Sci. 2013;18(7):580-2.
  • 20. Sağlam HS, Köse O, Kumsar Ş, Budak, Adsan Ö. Fasting Blood Glucose and Lipid Profile Alterations following Twelve-Month Androgen Deprivation Therapy in Men with Prostate Cancer. Sci World J.2012;2012:696329.
  • 21. Orwoll ES. Androgens: basic biology and clinical implication. Calcif Tissue Int. 2001;69:185–8.
  • 22. Stepan JJ, Lachman M, Zvioina J, Pacovsky V, Baylink DJ. Castrated men exhibit bone loss effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab. 1989;69:523–7.
  • 23. Shahinian VB,Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352:154-64.
  • 24. Mittan D, Lee S, Miller E, Perez RC, Basler JW, Bruder JM. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J ClinEndocrinolMetab. 2002;87:3656-61.
  • 25. Yazıcı S, Koşan M, Kaygısız O, Tül M, Adsan Ö. The effect of androgen deprivation therapy on bone mineral density in patients with advanced prostate cancer. Turkish Journal of Geriatrics. 2003;6(4):124-7.
  • 26. Smith MR, Goode M, Zietman AL, McGovern F J, Lee H, Finkelstein JS.Bicalutamide monotherapy versus leuprolide monotherapy for prostate cancer: effects on bone mineral density and body composition. J Clin Oncol. 2004;22(13):2546-53.
  • 27. Daniell HW, Dunn SR, Ferguson DW, Lomas G, Niazi Z, Stratte PT. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol. 2000;163:181-6.
  • 28. Diamond T, Campbell J, Bryant C, Lynch W. The effect of combined androgen blockade on bone turnover and bone mineral densities in men treated for prostate carcinoma. Cancer. 1998;83:1561–6.
  • 29. Oefelein MG, Ricchuiti V, Conrad W, Seftel A, Bodner D, Goldman H, et al. Skeletal fracture associated with androgen suppression induced osteoporosis: the clinical incidence and risk factors for patients with prostate cancer. J Urol. 2001;166:1724–8.
  • 30. Townsend MF, Sanders WH, Northway RO, Graham SD Jr. Bone fractures associated with luteinizing hormone-releasing hormone agonists used in the treatment of prostate carcinoma. Cancer. 1997;79:545–50.

Effect of maximal androgen blockade therapy on hematological, biochemical and bone density in locally advanced prostate cancer

Year 2018, Volume: 2 Issue: 3, 182 - 187, 13.11.2018
https://doi.org/10.30565/medalanya.407858

Abstract

Aim: In the present study we aimed to check the
impact of maximal androgen deprivation therapy (MADT) on cellular blood
components such as hemoglobin (Hb) and hematocrit (Htc)
  fasting blood glucose (FBG), serum lipid values
and bone mineral density (BMD) in locally advanced prostate cancer.

Patients and Methods: Having been treated with maximal
androgen blockade therapy, thirty-nine patients' initial values and at the
twelfth month values of hemoglobin (Hb), hematocrit (Htc), FBG, total
cholesterol (tChol), triglyceride (TG), high density lipoprotein (HDL), low density
lipoprotein (LDL) and spine BMD were recorded. Statistical comparisons of
initial and at the twelfth month values were performed.
 

Results:  A
statistically significant decrease was recorded in Hb and BMD values after one
year MADT. On the other hand, TG, tChol, LDL, HDL and FBG values showed a
statistically significant increase. Although Hb levels were significantly
reduced, none of our patients developed symptoms of anemia. Fourteen of 37
patients whose FBG levels were under 110 mg/dl before treatment, increased over
110 mg/dl at the twelfth month of treatment. Seven patients developed diabetes
mellitus (DM) after treatment. Moreover, T score evaluation revealed newly
developed osteoporosis in 4 patients. All of the patients with developed osteoporosis
had osteopenic T score values before treatment. No bone fractures occurred in
any of our patients.


























Conclusion:
Our study points out the increase of FBG related to the treatment of MADT.
Decrease in BMD is higher in previously osteopenic patients. The lack of bone
fracture and anemia symptoms might be considered as a result of evaluation of
the early data on MADT.

References

  • 1. Griffin JE, Wilson JD. Disorders of the testis and the male reproductive tract. In: Wilson JD editor. Williams Textbook of Endocrinology. Philadelphia: Saunders Company;1998. P. 819-75.
  • 2. Akdoğan B, Özen H. Benign prostatic hypertrophy and prostate cancer after testosterone replacement therapy. Bull Urooncol. 2006;5:3-6.
  • 3. Labrie F. Medical castration with LHRH agonists: 25 years later with major benefits achieved on survival in prostate cancer. J Androl. 2004;25:305–13.
  • 4. Huggins C, Stevens RE Jr, Hodges CV. Studies on prostate cancer. II. The effect of castration on advanced carcinoma of the prostate gland. Arch Surg 1941;43:209-23.
  • 5. Iversen P, Tyrrell CJ, Kaisary AV, Anderson JB, Van Poppel H, Tammela TL, et al. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of follow up. J Urol. 2000;164:1579–82.
  • 6. Mottet N, Prayer-Galetti T, Hammerer P, Kattan MW, Tunn U. Optimizing outcomes and quality of life in the hormonal treatment of prostate cancer. BJU International. 2006;98(1):20-7.
  • 7. Schwandt A, Garcia JA. Complications of androgen deprivation therapy in prostate cancer. CurrOpin Urol. 2009;19(3):322-6.
  • 8. Krugh M, Langaker MD. Dual Energy Xray Absorptiometry (DEXA) [Updated 2018 Jul 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519042/
  • 9. Strum SB, McDermed JE,Scholz MC, Johnson H, Tisman G.Anaemia associated with androgen deprivation in patients with prostate cancer receiving combined hormone blockade. Br J Urol. 1997;79:933-41.
  • 10. Beer TM, Tangen CM, Bland LB, Hussain M, Goldman BH, DeLoughery TG, et al. The prognostic value of hemoglobin change after initiating androgen‐deprivation therapy for newly diagnosed metastatic prostate cancer. Cancer. 2006;107(3):489-96.
  • 11. Bogdanos J, Karamanolakis D, Milathianakis C, Repousis P, Tsintavis A, Koutsilieris M. Combined androgen blockade-induced anemia in prostate cancer patients without bone involvement. Anticancer research. 2002;23:1757-62.
  • 12. Basaria S, Muller DC, Carducci MA, Egan J, Dobs AS. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen deprivation therapy. Cancer. 2006;106:581–8.
  • 13. Keating NL, O’Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J ClinOncol. 2006;24:4448-56.
  • 14. Sadeka S, Milena BB, Shehzad B. Androgen deprivation therapy in prostate cancer and metabolic risk for atherosclerosis. J Clin Endocrinol Metab. 2008;93(6):2042-9.
  • 15. Dockery F, Bulpitt CJ, Agarwal S, Donaldson M, Rajkumar C. Testosterone suppression in men with prostate cancer leads to an increase in arterial stiffness and hyperinsulinaemia. Clin Sci. 2003;104:195–201.
  • 16. von Eckardstein A, Kliesch S, Nieschlag E, Chirazi A, Assmann G, Behre HM. Suppression of Endogenous Testosterone in Young Men Increases Serum Levels of High Density Lipoprotein Subclass Lipoprotein AI and Lipoprotein(a) 1. J Clin Endocrinol Metab. 1997;82(10):3367-72.
  • 17. Kumar RJ. Adverse events associated with hormonal therapy for prostate cancer. Rev Urol. 2005;7 Suppl 5:37-43.
  • 18. Smith JC, Bennett S, Evans LM, Kynaston HG, Parmar M, Mason MD, et al. The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. J Clin Endocrinol Metab. 2001;86:4261–7.
  • 19. Roayaei M, Ghasemi S. Effect of androgen deprivation therapy on cardiovascular risk factors in prostate cancer. J Res Med Sci. 2013;18(7):580-2.
  • 20. Sağlam HS, Köse O, Kumsar Ş, Budak, Adsan Ö. Fasting Blood Glucose and Lipid Profile Alterations following Twelve-Month Androgen Deprivation Therapy in Men with Prostate Cancer. Sci World J.2012;2012:696329.
  • 21. Orwoll ES. Androgens: basic biology and clinical implication. Calcif Tissue Int. 2001;69:185–8.
  • 22. Stepan JJ, Lachman M, Zvioina J, Pacovsky V, Baylink DJ. Castrated men exhibit bone loss effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab. 1989;69:523–7.
  • 23. Shahinian VB,Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352:154-64.
  • 24. Mittan D, Lee S, Miller E, Perez RC, Basler JW, Bruder JM. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J ClinEndocrinolMetab. 2002;87:3656-61.
  • 25. Yazıcı S, Koşan M, Kaygısız O, Tül M, Adsan Ö. The effect of androgen deprivation therapy on bone mineral density in patients with advanced prostate cancer. Turkish Journal of Geriatrics. 2003;6(4):124-7.
  • 26. Smith MR, Goode M, Zietman AL, McGovern F J, Lee H, Finkelstein JS.Bicalutamide monotherapy versus leuprolide monotherapy for prostate cancer: effects on bone mineral density and body composition. J Clin Oncol. 2004;22(13):2546-53.
  • 27. Daniell HW, Dunn SR, Ferguson DW, Lomas G, Niazi Z, Stratte PT. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol. 2000;163:181-6.
  • 28. Diamond T, Campbell J, Bryant C, Lynch W. The effect of combined androgen blockade on bone turnover and bone mineral densities in men treated for prostate carcinoma. Cancer. 1998;83:1561–6.
  • 29. Oefelein MG, Ricchuiti V, Conrad W, Seftel A, Bodner D, Goldman H, et al. Skeletal fracture associated with androgen suppression induced osteoporosis: the clinical incidence and risk factors for patients with prostate cancer. J Urol. 2001;166:1724–8.
  • 30. Townsend MF, Sanders WH, Northway RO, Graham SD Jr. Bone fractures associated with luteinizing hormone-releasing hormone agonists used in the treatment of prostate carcinoma. Cancer. 1997;79:545–50.
There are 30 citations in total.

Details

Primary Language English
Subjects Surgery
Journal Section Research Article
Authors

Erhan Demirelli 0000-0002-0187-2156

Ahmet Hakan Haliloğlu

Ömer Gülpınar

Mehmet Giray Sönmez This is me

Yaşar Bedük This is me

Sadettin Küpeli This is me

Publication Date November 13, 2018
Submission Date March 25, 2018
Acceptance Date September 17, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

Vancouver Demirelli E, Haliloğlu AH, Gülpınar Ö, Sönmez MG, Bedük Y, Küpeli S. Effect of maximal androgen blockade therapy on hematological, biochemical and bone density in locally advanced prostate cancer. Acta Med. Alanya. 2018;2(3):182-7.

9705

This Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.