Research Article
BibTex RIS Cite

Lazer aksotomi sonrası primer kortikal nöron kültüründe rifampisinin nöronal hücre sağkalımı üzerine etkisi

Year 2019, Volume: 3 Issue: 2, 135 - 140, 23.08.2019
https://doi.org/10.30565/medalanya.553846

Abstract

Amaç: Aksonal hasarlanma sonucu oluşan nörodejenerasyon travmatik beyin hasarı ve omurilik yaralanmalarında sıklıkla görülen bir tablodur. Sinaptik disintegrasyon nedeniyle trofik faktörlerin nöron gövdesine retrograd olarak taşınamaması sonucu trofik faktör yetersizliği aksonu hasarlanmış olan nöronun ölümüne yol açar. Rifampisin antibiyotik etkilerinin yanı sıra çeşitli nörodejeneratif süreçlerde nöroprotektif etkileri de olan bir antibiyotiktir. Bu çalışmadaki amacımız lazer aksotomi ile hasarlanmış primer kortikal nöronlarda rifampisinin akut nöroprotektif etkilerinin araştırılmasıdır. 


Yöntemler: Yenidoğan farelerin kortikal nöronları izole edilerek kültür edildi. Yirmi dört saat sonra seçilen üç rifampisin dozu (1 μM, 10 μM ve 100 μM) primer kortikal nöronlara uygulandı. Rifampisin uygulamasından 15 dakika sonra lazer aksotomi gerçekleştirildi. Aksotomiden 24 saat son ra propidiyum iyodit boyaması ile nöronların canlılığı ölçüldü.


Bulgular: Lazer aksotomi nöronal canlılığı %80,45 oranında azalmaktadır. Buna karşılık rifampisin ön uygulaması ise aksonları hasarlı nöronların canlılığını seçilen üç dozda da anlamlı ölçüde arttırmıştır. 













Sonuç: Lazer aksotomi ile hasarlanmış kortikal nöronlardaki canlılığı arttırması nedeniyle rifampisinin söz konusu deneysel modelde akut nöroprotektif etkisi olduğu düşünülmektedir. 

References

  • 1. Koliatsos VE, Price DL. Axotomy as an experimental model of neuronal injury and cell death. Brain pathology. 1996;6(4):447-65.
  • 2. Czeiter E, Pal J, Kovesdi E, Bukovics P, Luckl J, Doczi T et al. Traumatic axonal injury in the spinal cord evoked by traumatic brain injury. J Neurotrauma. 2008;25(3):205-13. doi: 10.1089/neu.2007.0331.
  • 3. Nieuwenhuis B, Eva R. Linking axon transport to regeneration using in vitro laser axotomy. Neural Regen Res 2018; 13(3): 410-412. doi: 10.4103/1673-5374.228716. 4. Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A. Neurosurgery: functional regeneration after laser axotomy. Nature 2004; 432(7019): 822. doi: 10.1038/432822a
  • 5. Jackson J, Canty AJ, Huang L, De Paola V. Laser-Mediated Microlesions in Mouse Neocortex to Investigate Neuronal Degeneration and Regeneration. Curr Protoc Neurosci 2015; 73: 1-17. doi: 10.1002/0471142301.ns0224s73.
  • 6. Lopez-Garcia I, Gero D, Szczesny B, Szolecsky P, Olah G, Modis K et al. Development of a stretch-induced neurotrauma model for medium-throughput screening in vitro: idendification of rifampicin as a neuroprotectant. Br J Pharmacol 2018; 175(2): 284-300. doi: 10.1111/bph.13642
  • 7. Cengiz N, Öztürk G, Erdoğan E, Him A, Oğuz EK. Consequences of neurite transection in vitro. J Neurotrauma. 2012;29(15):2465-74. doi: 10.1089/neu.2009.0947.
  • 8. Hill CS, Coleman MP, Menon DK. Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci 2016; 39(5): 311-324. doi: 10.1016/j.tins.2016.03.002.
  • 9. Stock ML, Fiedler KJ, Acharya S, Lange JK, Mlynarczyk GS, Anderson SJ et al. Antibiotics acting as neuroprotectants via mechanisms independent of their anti-infective activities. Neuropharmacol 2013; 73: 174–182. doi: 10.1016/j.neuropharm.2013.04.059.
  • 10. Socias SB, Gonzalez-Lizarraga F, Avila CL, Vera C, Acuna L, Sepulveda-Diaz JE et al. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 2018; 162: 17-36. doi: 10.1016/j.pneurobio.2017.12.002.
  • 11. Amantea D, Certo M, Petrelli F, Bagetta G. Neuroprotective Properties of a Macrolide Antibiotic in a Mouse Model of Middle Cerebral Artery Occlusion: Characterization of the Immunomodulatory Effects and Validation of the Efficacy of Intravenous Administration. Assay Drug Dev Techol 2016; 14(5): 298-307. doi: 10.1089/adt.2016.728.
  • 12. Yulug B, Hanoglu L, Kilic E, Schabitz WR. Rifampicin: An antibiotic with brain protective function. Brain Res. Bull. 2014; 107: 37–42. doi: 10.1016/j.brainresbull.2014.05.007. 13. Bi W, Zhu L, Jing X, Liang Y, Tao E. Rifampicin and Parkinson’s Disease. Neurol Sci 2013; 34(2): 137-141. doi: 10.1007/s10072-012-1156-0.
  • 14. Lin D, Jing X, Chen Y, Liang Y, Lei M, Peng S et al. Rifampicin pre-treatment inhibits the toxicity of rotenone-induced PC12 cells by enhancing sumoylation modification of α-synuclein. Biochem Biophys Res Commun 2017; 485: 23-29. doi: 10.1016/j.bbrc.2017.01.100.
  • 15. Jing X, Shi Q, Bi W, Zeng Z, Liang Y, Wu X et al. Rifampicin protects PC12 cells from rotenone-induced cytotoxicity by activating GRP78 via PERK-eIF2α-ATF4 pathway. PLoS One. 2014; 9(3): e92110. doi: 10.1371/journal.pone.0092110
  • 16. Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256: 184–185.
  • 17. Cummings JL. Alzheimer’s disease. N Engl J Med 2004; 351: 56–67. doi: 10.1056/NEJMra040223
  • 18. Ubhi K, Rockenstein E, Mante M, Patrick C, Adame A, Thukral M et al. Rifampicin reduces alpha-synuclein in a transgenic mouse model of multiple system atrophy. Neuroreport 2008; 19: 1271–1276. doi: 10.1097/WNR.0b013e32830b3661.
  • 19. Xu J, Wei C, Xu C, Bennett MC, Zhang G, Li F et al. Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expressio of an alpha-Synuclein multimer. Brain Res. 2007; 1139: 220–225. doi: 10.1016/j.brainres.2006.12.074
  • 20. Bi W, Zhu L, Wang C, Liang Y, Liu J, Shi Q et al. Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res. 2011; 13: 12–20. doi: 10.1016/j.brainres.2011.04.019.
  • 21. Tomiyama T, Shoji A, Kataoka K, Suwa Y, Asano S, Kaneko H et al. Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin: Its possible function as a hydroxyl radical scavenger. J. Biol. Chem. 1996; 271: 6839–6845.
  • 22. Umeda T, Ono K, Sakai A, Yamashita M, Mizuguchi M, Klein WL et al. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain. 2016; 139: 1565-1586. doi: 10.1093/brain/aww042.
  • 23. Yulug B, Hanoglu L, Ozansoy M, Isik D, Kilic U, Kilic E, Schabitz WR. Therapeutic role of rifampicin in Alzheimer’s Disease. Psychiatry Clin Neurosci 2018; 73(3): 152-159. doi: 10.1111/pcn.12637.
  • 24. Iizuka T, Morimoto K, Sasaki Y, Kamayema M, Kurashima A, Hayasaka K et al. Preventive effect of rifampicin on Alzheimer disease needs at least 450 mg daily for 1 year: An FDG-PET follow-up study. Dement Geriatr Cogn Dis Extra 2017; 7: 204–214. doi: 10.1159/000477343.
  • 25. Umeda T, Tanaka A, Sakai A, Yamamoto A, Sakane T, Tomiyama T. Intranasal rifampicin for Alzheimer’s disease prevention. Alzheimers Dement (NY). 2018; 4: 304-313. doi: 10.1016/j.trci.2018.06.012

The effect of rifampicin on the neuronal cell survival in prımary cortical neuron culture after laser axotomy

Year 2019, Volume: 3 Issue: 2, 135 - 140, 23.08.2019
https://doi.org/10.30565/medalanya.553846

Abstract

Aim: Neurodegeneration caused by the axonal injury is a widely seen phenomenon in spinal cord and traumatic brain injuries. Due to the disintegration of the synaptic connection neurotrophic factors could not be transported retrogradely towards the cell body and the deprivation of the trophic factors lead to the degeneration and death of the injured neuron. Rifampicin is an antibiotic exhibiting several neuroprotective functions in various neurodegenerative conditions. Here we aim to investigate the acute neuroprotective effect of rifampicin in primary cortical neuron culture in which neurons are axotomized by laser axotomy.


Methods: Neonatal male mice were used in order to isolate cortical neurons. Isolated primary cortical neurons were cultured. After 24 hours three different rifampicin concentrations (1 μM, 10 μM and 100 μM) were applied to the neurons and after 15 minutes of rifampicin addition, neurons were laser axotomized. Viability of the cells was evaluated by propidium iodide staining after 24 hours of axotomy. 


Results: Laser axotomy decreases the cortical neuron viability significantly by 80.45%, while rifampicin pre-treatment increases their viability in all three dosages in a statistically significant manner. 













Conclusion: Rifampicin has an acute neuroprotective effect on the viability of the laser axotomized cortical neurons. 

References

  • 1. Koliatsos VE, Price DL. Axotomy as an experimental model of neuronal injury and cell death. Brain pathology. 1996;6(4):447-65.
  • 2. Czeiter E, Pal J, Kovesdi E, Bukovics P, Luckl J, Doczi T et al. Traumatic axonal injury in the spinal cord evoked by traumatic brain injury. J Neurotrauma. 2008;25(3):205-13. doi: 10.1089/neu.2007.0331.
  • 3. Nieuwenhuis B, Eva R. Linking axon transport to regeneration using in vitro laser axotomy. Neural Regen Res 2018; 13(3): 410-412. doi: 10.4103/1673-5374.228716. 4. Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A. Neurosurgery: functional regeneration after laser axotomy. Nature 2004; 432(7019): 822. doi: 10.1038/432822a
  • 5. Jackson J, Canty AJ, Huang L, De Paola V. Laser-Mediated Microlesions in Mouse Neocortex to Investigate Neuronal Degeneration and Regeneration. Curr Protoc Neurosci 2015; 73: 1-17. doi: 10.1002/0471142301.ns0224s73.
  • 6. Lopez-Garcia I, Gero D, Szczesny B, Szolecsky P, Olah G, Modis K et al. Development of a stretch-induced neurotrauma model for medium-throughput screening in vitro: idendification of rifampicin as a neuroprotectant. Br J Pharmacol 2018; 175(2): 284-300. doi: 10.1111/bph.13642
  • 7. Cengiz N, Öztürk G, Erdoğan E, Him A, Oğuz EK. Consequences of neurite transection in vitro. J Neurotrauma. 2012;29(15):2465-74. doi: 10.1089/neu.2009.0947.
  • 8. Hill CS, Coleman MP, Menon DK. Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci 2016; 39(5): 311-324. doi: 10.1016/j.tins.2016.03.002.
  • 9. Stock ML, Fiedler KJ, Acharya S, Lange JK, Mlynarczyk GS, Anderson SJ et al. Antibiotics acting as neuroprotectants via mechanisms independent of their anti-infective activities. Neuropharmacol 2013; 73: 174–182. doi: 10.1016/j.neuropharm.2013.04.059.
  • 10. Socias SB, Gonzalez-Lizarraga F, Avila CL, Vera C, Acuna L, Sepulveda-Diaz JE et al. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 2018; 162: 17-36. doi: 10.1016/j.pneurobio.2017.12.002.
  • 11. Amantea D, Certo M, Petrelli F, Bagetta G. Neuroprotective Properties of a Macrolide Antibiotic in a Mouse Model of Middle Cerebral Artery Occlusion: Characterization of the Immunomodulatory Effects and Validation of the Efficacy of Intravenous Administration. Assay Drug Dev Techol 2016; 14(5): 298-307. doi: 10.1089/adt.2016.728.
  • 12. Yulug B, Hanoglu L, Kilic E, Schabitz WR. Rifampicin: An antibiotic with brain protective function. Brain Res. Bull. 2014; 107: 37–42. doi: 10.1016/j.brainresbull.2014.05.007. 13. Bi W, Zhu L, Jing X, Liang Y, Tao E. Rifampicin and Parkinson’s Disease. Neurol Sci 2013; 34(2): 137-141. doi: 10.1007/s10072-012-1156-0.
  • 14. Lin D, Jing X, Chen Y, Liang Y, Lei M, Peng S et al. Rifampicin pre-treatment inhibits the toxicity of rotenone-induced PC12 cells by enhancing sumoylation modification of α-synuclein. Biochem Biophys Res Commun 2017; 485: 23-29. doi: 10.1016/j.bbrc.2017.01.100.
  • 15. Jing X, Shi Q, Bi W, Zeng Z, Liang Y, Wu X et al. Rifampicin protects PC12 cells from rotenone-induced cytotoxicity by activating GRP78 via PERK-eIF2α-ATF4 pathway. PLoS One. 2014; 9(3): e92110. doi: 10.1371/journal.pone.0092110
  • 16. Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256: 184–185.
  • 17. Cummings JL. Alzheimer’s disease. N Engl J Med 2004; 351: 56–67. doi: 10.1056/NEJMra040223
  • 18. Ubhi K, Rockenstein E, Mante M, Patrick C, Adame A, Thukral M et al. Rifampicin reduces alpha-synuclein in a transgenic mouse model of multiple system atrophy. Neuroreport 2008; 19: 1271–1276. doi: 10.1097/WNR.0b013e32830b3661.
  • 19. Xu J, Wei C, Xu C, Bennett MC, Zhang G, Li F et al. Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expressio of an alpha-Synuclein multimer. Brain Res. 2007; 1139: 220–225. doi: 10.1016/j.brainres.2006.12.074
  • 20. Bi W, Zhu L, Wang C, Liang Y, Liu J, Shi Q et al. Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res. 2011; 13: 12–20. doi: 10.1016/j.brainres.2011.04.019.
  • 21. Tomiyama T, Shoji A, Kataoka K, Suwa Y, Asano S, Kaneko H et al. Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin: Its possible function as a hydroxyl radical scavenger. J. Biol. Chem. 1996; 271: 6839–6845.
  • 22. Umeda T, Ono K, Sakai A, Yamashita M, Mizuguchi M, Klein WL et al. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain. 2016; 139: 1565-1586. doi: 10.1093/brain/aww042.
  • 23. Yulug B, Hanoglu L, Ozansoy M, Isik D, Kilic U, Kilic E, Schabitz WR. Therapeutic role of rifampicin in Alzheimer’s Disease. Psychiatry Clin Neurosci 2018; 73(3): 152-159. doi: 10.1111/pcn.12637.
  • 24. Iizuka T, Morimoto K, Sasaki Y, Kamayema M, Kurashima A, Hayasaka K et al. Preventive effect of rifampicin on Alzheimer disease needs at least 450 mg daily for 1 year: An FDG-PET follow-up study. Dement Geriatr Cogn Dis Extra 2017; 7: 204–214. doi: 10.1159/000477343.
  • 25. Umeda T, Tanaka A, Sakai A, Yamamoto A, Sakane T, Tomiyama T. Intranasal rifampicin for Alzheimer’s disease prevention. Alzheimers Dement (NY). 2018; 4: 304-313. doi: 10.1016/j.trci.2018.06.012
There are 23 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Mehmet Ozansoy 0000-0002-1079-8832

Ebru Coşkun This is me

Muzaffer Beyza Çetin Ozansoy This is me

Şeyda Çankaya

Mehmet Yalçın Günal This is me

Zübeyir Bayraktaroğlu This is me

Burak Yuluğ

Lütfü Hanoğlu This is me

Publication Date August 23, 2019
Submission Date April 15, 2019
Acceptance Date May 7, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

Vancouver Ozansoy M, Coşkun E, Çetin Ozansoy MB, Çankaya Ş, Günal MY, Bayraktaroğlu Z, Yuluğ B, Hanoğlu L. The effect of rifampicin on the neuronal cell survival in prımary cortical neuron culture after laser axotomy. Acta Med. Alanya. 2019;3(2):135-40.

9705

This Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.