Research Article
BibTex RIS Cite

Effect of Gallic Acid on PTZ-induced Neurotoxıcıty, Oxidative Stress and Inflammation in SH-SY5Y Neuroblastoma Cells

Year 2024, Volume: 8 Issue: 1, 8 - 12, 30.04.2024
https://doi.org/10.30565/medalanya.1415132

Abstract

Aim: Human neuroblastoma cell lines are widely used to elucidate the cellular and molecular mechanisms of neurotoxicants and to facilitate the prioritization of in vivo testing. Pentylenetetrazole (PTZ) is a tetrazole derivative. Although PTZ is the most commonly used chemical to create an in vivo and in vitro epilepsy (EP) model, its mechanism of action in neuronal cells has not been fully elucidated. Gallic acid (GA) has broad biological properties such as antioxidant, anti-microbial, and anti-inflammatory activities. This study aimed to investigate the effect of GA on PTZ-induced neurotoxicity in neuroblastoma cells.

Methods: For the study, four groups were formed from SH-SY5Y neuroblastoma cells as control (C), GA (100 μM), PTZ (30 μM), and PTZ+GA. In the study, total antioxidant and oxidant status (TAS and TOS), inflammatory cytokines (TNF α, IL 1β, and IL 6), lipid peroxidation levels as malondialdehyde (MDA), glutathione peroxidase (GSHPx), and glutathione (GSH) levels in the SH-SY5Y neuroblastoma cells were determined.

Results: The results showed that PTZ treatment caused neurotoxicity in the neuroblastoma cell line and increased TOS, TNF α, IL 1β, IL 6, and MDA levels while decreasing TAS, GSH, and GSHPx levels. This situation improved with GA treatment.

Conclusion: As a result, it was determined that GA treatment showed a protective effect in the PTZ-induced neural toxicity model in SH-SY5Y human neuroblastoma cell lines.

Ethical Statement

The current study has no study with human and human participants. The study is not subject to ethics committee approval. Ethics Committee Approval is not required for cell culture studies.

References

  • 1. Ahlatcı A, Yıldızhan K, Tülüce Y, Bektaş M. Valproic Acid Attenuated PTZ-induced Oxidative Stress, Inflammation, and Apoptosis in the SH-SY5Y Cells via Modulating the TRPM2 Channel. Neurotox Res. 2022;40(6):1979-88. DOI: 10.1007/s12640-022-00622-3.
  • 2. Wahab A. Difficulties in Treatment and Management of Epilepsy and Challenges in New Drug Development. Pharmaceuticals (Basel). 2010;3(7):2090-110. DOI: 10.3390/ph3072090.
  • 3. Sheng F, Chen M, Tan Y, Xiang C, Zhang M, Li B et al. Protective Effects of Otophylloside N on Pentylenetetrazol-Induced Neuronal Injury In vitro and In vivo. Front Pharmacol. 2016;25;7:224. DOI: 10.3389/fphar.2016.00224.
  • 4. Lopez-Suarez L, Awabdh SA, Coumoul X, Chauvet C. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. Neurotoxicology. 2022;92:131-55. DOI: 10.1016/j.neuro.2022.07.008.
  • 5. Giachello CN, Premoselli F, Montarolo PG, Ghirardi M. Pentylenetetrazol-induced epileptiform activity affects basal synaptic transmission and short-term plasticity in monosynaptic connections. PLoS One. 2013;8(2):e56968. DOI: 10.1371/journal.pone.0056968.
  • 6. Qi H, Liu L. Rhoifolin attenuates damage to hippocampal neuronal culture model of acquired epilepsy in vitro by regulating NF-κB/iNOS/COX-2 axis. Quality Assurance and Safety of Crops & Foods. 2022;14(3):116–23. DOI: 10.15586/qas.v14i3.1093.
  • 7. Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci. 2018;128(11):1086-96. DOI: 10.1080/00207454.2018.1481064.
  • 8. Sun J, Li YZ, Ding YH, Wang J, Geng J, Yang H et al. Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo. Brain Res. 2014;1589:126-39. DOI: 10.1016/j.brainres.2014.09.039.
  • 9. Wang X, Xiao A, Yang Y, Zhao Y, Wang CC, Wang Y et al. DHA and EPA Prevent Seizure and Depression-Like Behavior by Inhibiting Ferroptosis and Neuroinflammation via Different Mode-of-Actions in a Pentylenetetrazole-Induced Kindling Model in Mice. Mol Nutr Food Res. 2022;66(22):e2200275. DOI: 10.1002/mnfr.202200275.
  • 10. Zhao Y, Li D, Zhu Z, Sun Y. Improved Neuroprotective Effects of Gallic Acid-Loaded Chitosan Nanoparticles Against Ischemic Stroke. Rejuvenation Res. 2020;23(4):284-92. DOI: 10.1089/rej.2019.2230.
  • 11. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019;22(3):225-37. DOI: 10.22038/ijbms.2019.32806.7897.
  • 12. Fitzpatrick LR, Woldemariam T. 5.16 - Small-Molecule Drugs for the Treatment of Inflammatory Bowel Disease, Comprehensive Medicinal Chemistry III, Elsevier, 2017;495-510. DOI: 10.1016/B978-0-12-409547-2.12404-7.
  • 13. Abbasalipour H, Hajizadeh Moghaddam A, Ranjbar M. Sumac and gallic acid-loaded nanophytosomes ameliorate hippocampal oxidative stress via regulation of Nrf2/Keap1 pathway in autistic rats. J Biochem Mol Toxicol. 2022;36(6):e23035. DOI: 10.1002/jbt.23035.
  • 14. de Cristo Soares Alves A, Mainardes RM, Khalil NM. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Mater Sci Eng C Mater Biol Appl. 2016;60:126-34. DOI: 10.1016/j.msec.2015.11.014.
  • 15. Kroes BH, van den Berg AJ, Quarles van Ufford HC, van Dijk H, Labadie RP. Anti-inflammatory activity of gallic acid. Planta Med. 1992;58(6):499-504. DOI: 10.1055/s-2006-961535.
  • 16. Ergul Erkec O, Arihan O, Kara M, Karatas E, Erten R, Demir H et al. Effects of Leontice leontopetalum and Bongardia chrysogonum on oxidative stress and neuroprotection in PTZ kindling epilepsy in rats. Cell Mol Biol (Noisy-le-grand). 2018;64(15):71-77. PMID: 30672439.
  • 17. Essawy AE, El-Sayed SA, Tousson E, Abd El-Gawad HS, Alhasani RH, Abd Elkader HAE. Anti-kindling effect of Ginkgo biloba leaf extract and L-carnitine in the pentylenetetrazol model of epilepsy. Environ Sci Pollut Res Int. 2022;29(32):48573-87. DOI: 10.1007/s11356-022-19251-6.
  • 18. Landucci E, Mazzantini C, Lana D, Calvani M, Magni G, Giovannini MG et al. Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model. Neurobiol Dis. 2022;174:105895. DOI: 10.1016/j.nbd.2022.105895.
  • 19. Verma N, Maiti R, Mishra BR, Jha M, Jena M, Mishra A. Effect of add-on melatonin on seizure outcome, neuronal damage, oxidative stress, and quality of life in generalized epilepsy with generalized onset motor seizures in adults: A randomized controlled trial. J Neurosci Res. 2021;99(6):1618-31. DOI: 10.1002/jnr.24820.
  • 20. Lu Z, Nie G, Belton PS, Tang H, Zhao B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int. 2006;48(4):263-74. DOI: 10.1016/j.neuint.2005.10.010.
  • 21. Yazğan Y, Nazıroğlu M. Involvement of TRPM2 in the Neurobiology of Experimental Migraine: Focus on Oxidative Stress and Apoptosis. Mol Neurobiol. 2021;58(11):5581–601. DOI: 10.1007/s12035-021-02503-w.
  • 22. Yazğan B, Yazğan Y. Potent antioxidant alpha lipoic acid reduces STZ-induced oxidative stress and apoptosis levels in the erythrocytes and brain cells of diabetic rats. Journal of Cellular Neuroscience and Oxidative Stress. 2022;14(2):1085-94. DOI: 10.37212/jcnos.1245152.
  • 23. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966;16(2):359-64. DOI: 10.1016/0003-2697(66)90167-9.
  • 24. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 1968;25(1):192-205. DOI: 10.1016/0003-2697(68)90092-4.
  • 25. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976;71(4):952-8. DOI: 10.1016/0006-291x(76)90747-6.
  • 26. Miller SP, Li LM, Cendes F, Tasch E, Andermann F, Dubeau F et al. Medial temporal lobe neuronal damage in temporal and extratemporal lesional epilepsy. Neurology. 2000;54(7):1465-70. DOI: 10.1212/wnl.54.7.1465. 27. Karademir M, Gümüş E, Taştemur Y, Ergül M, Ergül M, Karabulut S et al. Neuroprotective effect of astaxanthin (ATX) against cognitive impairment on PTZ-induced epileptic seizures in rats and against PTZ-induced neurotoxicity in SH-SY5Y human neuroblastoma cell culture. Cumhuriyet Medical Journal. 2019;41(1):212-22. DOI: 10.7197/223.vi.535637.
  • 28. Khatoon S, Agarwal NB, Samim M, Alam O. Neuroprotective efect of fsetin through suppression of IL-1R/TLR axis and apoptosis in pentylenetetrazole-induced kindling in mice. Front Neurol. 2021;12:689069.. DOI: 10.3389/fneur.2021.689069.
  • 29. Zhu L, Gu P, Shen H. Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis. Int Immunopharmacol. 2019;67:129-37. DOI:10.1016/j.intimp.2018.11.049.
  • 30. Maurya H, Mangal V, Gandhi S, Prabhu K, Ponnudurai K. Prophylactic antioxidant potential of gallic Acid in murine model of sepsis. Int J Inflam. 2014;2014:580320. DOI: 10.1155/2014/580320.
  • 31. Taskıran AS, Ozdemir E, Gumus E, Ergul M. The efects of salmon calcitonin on epileptic seizures, epileptogenesis, and postseizure hippocampal neuronal damage in pentylenetetrazole induced epilepsy model in rats. Epilepsy Behav. 2020;113:107501. DOI: 10.1016/j.yebeh.2020.107501.
  • 32. Taskiran AS, Ergul M, Gunes H, Ozturk A, Sahin B, Ozdemir E. The efects of proton pump inhibitors (pantoprazole) on pentylenetetrazole-induced epileptic seizures in rats and neurotoxicity in the SH-SY5Y human neuroblastoma cell line. Cell Mol Neurobiol. 2021;41(1):173–83. DOI:10.1007/s10571-020-00956-6.

SH-SY5Y Nöroblastoma Hücrelerinde PTZ ile Oluşturulan Nörotoksisite, Oksidatif Stres ve İnflamasyon Üzerine Gallik Asidin Etkisi

Year 2024, Volume: 8 Issue: 1, 8 - 12, 30.04.2024
https://doi.org/10.30565/medalanya.1415132

Abstract

Amaç: İnsan nöroblastoma hücre hatları, nörotoksik maddelerin hücresel ve moleküler mekanizmalarını aydınlatmak ve in vivo testlerin önceliklendirilmesini kolaylaştırmak için yaygın olarak kullanılmaktadır. Pentilenetetrazol (PTZ) bir tetrazol türevidir. PTZ, in vivo ve in vitro epilepsi (EP) modeli oluşturmak için en yaygın kullanılan kimyasal olmasına rağmen, nöronal hücrelerdeki etki mekanizması tam olarak aydınlatılamamıştır. Gallik asit (GA) antioksidan, anti-mikrobiyal ve anti-enflamatuar aktiviteler gibi geniş biyolojik özelliklere sahiptir. Bu çalışma, GA’nın nöroblastoma hücrelerinde PTZ kaynaklı nörotoksisite üzerindeki etkisini araştırmayı amaçlamıştır.

Yöntem: Çalışma için SH-SY5Y nöroblastoma hücrelerinden kontrol (K), GA (100 μM), PTZ (30 μM) ve PTZ+GA olmak üzere dört grup oluşturulmuştur. Çalışmada SH-SY5Y nöroblastoma hücrelerinde toplam antioksidan ve oksidan durumu (TAS ve TOS), inflamatuvar sitokinler (TNF α, IL 1β ve IL 6), glutatyon peroksidaz (GSHPx), glutatyon (GSH) seviyeleri ve malondialdehit (MDA) olarak lipid peroksidasyon seviyeleri belirlenmiştir.

Bulgular: Sonuçlar PTZ tedavisinin nöroblastoma hücre hattında nörotoksisiteye neden olduğunu ve TOS, TNF α, IL 1β, IL 6 ve MDA seviyelerini artırırken TAS, GSH ve GSHPx seviyelerini azalttığını göstermiştir. Bu durum GA tedavisi ile düzelmiştir.

Sonuç: Sonuç olarak, GA tedavisinin SH-SY5Y insan nöroblastom hücre hatlarında PTZ kaynaklı nöral toksisite modelinde koruyucu bir etki gösterdiği belirlenmiştir.

References

  • 1. Ahlatcı A, Yıldızhan K, Tülüce Y, Bektaş M. Valproic Acid Attenuated PTZ-induced Oxidative Stress, Inflammation, and Apoptosis in the SH-SY5Y Cells via Modulating the TRPM2 Channel. Neurotox Res. 2022;40(6):1979-88. DOI: 10.1007/s12640-022-00622-3.
  • 2. Wahab A. Difficulties in Treatment and Management of Epilepsy and Challenges in New Drug Development. Pharmaceuticals (Basel). 2010;3(7):2090-110. DOI: 10.3390/ph3072090.
  • 3. Sheng F, Chen M, Tan Y, Xiang C, Zhang M, Li B et al. Protective Effects of Otophylloside N on Pentylenetetrazol-Induced Neuronal Injury In vitro and In vivo. Front Pharmacol. 2016;25;7:224. DOI: 10.3389/fphar.2016.00224.
  • 4. Lopez-Suarez L, Awabdh SA, Coumoul X, Chauvet C. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. Neurotoxicology. 2022;92:131-55. DOI: 10.1016/j.neuro.2022.07.008.
  • 5. Giachello CN, Premoselli F, Montarolo PG, Ghirardi M. Pentylenetetrazol-induced epileptiform activity affects basal synaptic transmission and short-term plasticity in monosynaptic connections. PLoS One. 2013;8(2):e56968. DOI: 10.1371/journal.pone.0056968.
  • 6. Qi H, Liu L. Rhoifolin attenuates damage to hippocampal neuronal culture model of acquired epilepsy in vitro by regulating NF-κB/iNOS/COX-2 axis. Quality Assurance and Safety of Crops & Foods. 2022;14(3):116–23. DOI: 10.15586/qas.v14i3.1093.
  • 7. Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci. 2018;128(11):1086-96. DOI: 10.1080/00207454.2018.1481064.
  • 8. Sun J, Li YZ, Ding YH, Wang J, Geng J, Yang H et al. Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo. Brain Res. 2014;1589:126-39. DOI: 10.1016/j.brainres.2014.09.039.
  • 9. Wang X, Xiao A, Yang Y, Zhao Y, Wang CC, Wang Y et al. DHA and EPA Prevent Seizure and Depression-Like Behavior by Inhibiting Ferroptosis and Neuroinflammation via Different Mode-of-Actions in a Pentylenetetrazole-Induced Kindling Model in Mice. Mol Nutr Food Res. 2022;66(22):e2200275. DOI: 10.1002/mnfr.202200275.
  • 10. Zhao Y, Li D, Zhu Z, Sun Y. Improved Neuroprotective Effects of Gallic Acid-Loaded Chitosan Nanoparticles Against Ischemic Stroke. Rejuvenation Res. 2020;23(4):284-92. DOI: 10.1089/rej.2019.2230.
  • 11. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019;22(3):225-37. DOI: 10.22038/ijbms.2019.32806.7897.
  • 12. Fitzpatrick LR, Woldemariam T. 5.16 - Small-Molecule Drugs for the Treatment of Inflammatory Bowel Disease, Comprehensive Medicinal Chemistry III, Elsevier, 2017;495-510. DOI: 10.1016/B978-0-12-409547-2.12404-7.
  • 13. Abbasalipour H, Hajizadeh Moghaddam A, Ranjbar M. Sumac and gallic acid-loaded nanophytosomes ameliorate hippocampal oxidative stress via regulation of Nrf2/Keap1 pathway in autistic rats. J Biochem Mol Toxicol. 2022;36(6):e23035. DOI: 10.1002/jbt.23035.
  • 14. de Cristo Soares Alves A, Mainardes RM, Khalil NM. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Mater Sci Eng C Mater Biol Appl. 2016;60:126-34. DOI: 10.1016/j.msec.2015.11.014.
  • 15. Kroes BH, van den Berg AJ, Quarles van Ufford HC, van Dijk H, Labadie RP. Anti-inflammatory activity of gallic acid. Planta Med. 1992;58(6):499-504. DOI: 10.1055/s-2006-961535.
  • 16. Ergul Erkec O, Arihan O, Kara M, Karatas E, Erten R, Demir H et al. Effects of Leontice leontopetalum and Bongardia chrysogonum on oxidative stress and neuroprotection in PTZ kindling epilepsy in rats. Cell Mol Biol (Noisy-le-grand). 2018;64(15):71-77. PMID: 30672439.
  • 17. Essawy AE, El-Sayed SA, Tousson E, Abd El-Gawad HS, Alhasani RH, Abd Elkader HAE. Anti-kindling effect of Ginkgo biloba leaf extract and L-carnitine in the pentylenetetrazol model of epilepsy. Environ Sci Pollut Res Int. 2022;29(32):48573-87. DOI: 10.1007/s11356-022-19251-6.
  • 18. Landucci E, Mazzantini C, Lana D, Calvani M, Magni G, Giovannini MG et al. Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model. Neurobiol Dis. 2022;174:105895. DOI: 10.1016/j.nbd.2022.105895.
  • 19. Verma N, Maiti R, Mishra BR, Jha M, Jena M, Mishra A. Effect of add-on melatonin on seizure outcome, neuronal damage, oxidative stress, and quality of life in generalized epilepsy with generalized onset motor seizures in adults: A randomized controlled trial. J Neurosci Res. 2021;99(6):1618-31. DOI: 10.1002/jnr.24820.
  • 20. Lu Z, Nie G, Belton PS, Tang H, Zhao B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int. 2006;48(4):263-74. DOI: 10.1016/j.neuint.2005.10.010.
  • 21. Yazğan Y, Nazıroğlu M. Involvement of TRPM2 in the Neurobiology of Experimental Migraine: Focus on Oxidative Stress and Apoptosis. Mol Neurobiol. 2021;58(11):5581–601. DOI: 10.1007/s12035-021-02503-w.
  • 22. Yazğan B, Yazğan Y. Potent antioxidant alpha lipoic acid reduces STZ-induced oxidative stress and apoptosis levels in the erythrocytes and brain cells of diabetic rats. Journal of Cellular Neuroscience and Oxidative Stress. 2022;14(2):1085-94. DOI: 10.37212/jcnos.1245152.
  • 23. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966;16(2):359-64. DOI: 10.1016/0003-2697(66)90167-9.
  • 24. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 1968;25(1):192-205. DOI: 10.1016/0003-2697(68)90092-4.
  • 25. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976;71(4):952-8. DOI: 10.1016/0006-291x(76)90747-6.
  • 26. Miller SP, Li LM, Cendes F, Tasch E, Andermann F, Dubeau F et al. Medial temporal lobe neuronal damage in temporal and extratemporal lesional epilepsy. Neurology. 2000;54(7):1465-70. DOI: 10.1212/wnl.54.7.1465. 27. Karademir M, Gümüş E, Taştemur Y, Ergül M, Ergül M, Karabulut S et al. Neuroprotective effect of astaxanthin (ATX) against cognitive impairment on PTZ-induced epileptic seizures in rats and against PTZ-induced neurotoxicity in SH-SY5Y human neuroblastoma cell culture. Cumhuriyet Medical Journal. 2019;41(1):212-22. DOI: 10.7197/223.vi.535637.
  • 28. Khatoon S, Agarwal NB, Samim M, Alam O. Neuroprotective efect of fsetin through suppression of IL-1R/TLR axis and apoptosis in pentylenetetrazole-induced kindling in mice. Front Neurol. 2021;12:689069.. DOI: 10.3389/fneur.2021.689069.
  • 29. Zhu L, Gu P, Shen H. Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis. Int Immunopharmacol. 2019;67:129-37. DOI:10.1016/j.intimp.2018.11.049.
  • 30. Maurya H, Mangal V, Gandhi S, Prabhu K, Ponnudurai K. Prophylactic antioxidant potential of gallic Acid in murine model of sepsis. Int J Inflam. 2014;2014:580320. DOI: 10.1155/2014/580320.
  • 31. Taskıran AS, Ozdemir E, Gumus E, Ergul M. The efects of salmon calcitonin on epileptic seizures, epileptogenesis, and postseizure hippocampal neuronal damage in pentylenetetrazole induced epilepsy model in rats. Epilepsy Behav. 2020;113:107501. DOI: 10.1016/j.yebeh.2020.107501.
  • 32. Taskiran AS, Ergul M, Gunes H, Ozturk A, Sahin B, Ozdemir E. The efects of proton pump inhibitors (pantoprazole) on pentylenetetrazole-induced epileptic seizures in rats and neurotoxicity in the SH-SY5Y human neuroblastoma cell line. Cell Mol Neurobiol. 2021;41(1):173–83. DOI:10.1007/s10571-020-00956-6.
There are 31 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Article
Authors

Yener Yazğan 0000-0002-5613-6906

Publication Date April 30, 2024
Submission Date January 5, 2024
Acceptance Date January 24, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

Vancouver Yazğan Y. Effect of Gallic Acid on PTZ-induced Neurotoxıcıty, Oxidative Stress and Inflammation in SH-SY5Y Neuroblastoma Cells. Acta Med. Alanya. 2024;8(1):8-12.

9705

This Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.