Review
BibTex RIS Cite

Interactions Between Economy and Fish Welfare in Aquaponics Systems

Year 2019, Volume: 2 Issue: 1, 27 - 38, 30.01.2019

Abstract

Fish are considered to
be sentient and capable of perceiving and experiencing pain. Fish welfare
in farming conditions can be interpreted with regard to ethics, economic
viability, legal issues and consumer’s perspectives. Fish welfare is
directly related with the economic inputs such as stocking density, mortality
and growth rate, affecting the profitability of the aquaponics systems
therefore, fish welfare has a strong economical dimension in an overall
sustainability of aquaponics systems. Thus, there is a growing understanding of
a link between fish welfare and feasibility of the fish production
systems. The economic achievement of aquaponics production may be linked
to fish welfare, particularly with regard to preclude the fish diseases.
Sustainable and profitable production of aquaponics can be challenged by poor
welfare of fish. The poor welfare might lead to higher yield variation,
resulting in poor economic gain. The strategies that can be adopted to
protect fish welfare can increase profits and productivity of the
aquaponics systems. Fish welfare practices should be considered to improve
the production performance in aquaponics.

References

  • Alfnes, F., Chen, X., Rickertsen, K. (2017) Labeling farmed seafood:A review. Aquaculture Economics and Management 22(1): 1-26 DOI: 10.1080/13657305.2017.1356398
  • Anonymous (1979) Opinion on the Welfare of the Farmed Fish. Farm Animal Welfare Committee. February 2014. Available online: www.defra.gov.uk/fawc
  • Anonymous (2017) Welfare of farmed fish: Common practices during transport and at slaughter. SANTE/2016/G2/009, September 2017 doi: 10.2875/172078
  • Costas, B., Araga, C., Mancera, J.M., Dinis, M.T., Conceica, L.E.C. (2008) High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles. Aquaculture Research 39: 1–9
  • Dykes, A. (2012) Cost and Benefits of Fish Welfare – A Producer’s Perspective. Aquacult Econ & Manag 16 (4): 429-432 DOI: 10.1080/13657305.2012.729246
  • d’Orbcastel, E.R., Blancheton, J.P., Belaud, A. (2009) Water quality and rainbow trout performance in a Danish Model Farm recirculating system: Comparison with a flow through system. Aquacultural Engineering 40: 135–143
  • EFSA (2004) Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to the welfare of animals during transport. Question N° EFSA-Q-2003-094. The EFSA Journal 44: 181Ellis, T., North, B., Scott, A.P., Bromage, N.R., Porter, M., Gadd, D. (2002) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biology 61: 493-531
  • Ellis, T., Yildiz, H.Y., López-Olmeda, J., Spedicato, M.T., Tort, L., Øverli, Ø., Martins, C. (2012a) Cortisol and fish welfare. Fish Physiology Biochemistry 38:163–188
  • Ellis, T., Berrill, I., Lines, J., Turnbull, J.F., Knowles, T.G. (2012b) Mortality and fish welfare. Fish Physiology Biochemistry. 38(1):189-99 doi: 10.1007/s10695-011-9547-3
  • Feucte, Y. and Zander, K. (2015) Of earth ponds, flow-through and closed recirculation systems—German consumers' understanding of sustainable aquaculture and its communication. Aquaculture 438:151-158
  • Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K.V., Jijakli, M.H., Thorarinsdottir, R. (2015) Challenges of Sustainable and Commercial Aquaponics. Sustainability 7: 4199-4224 doi:10.3390/su7044199
  • Handeland,S.O., Imsland, A.K., Stefansson, S.O. (2008) The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283:36-42
  • Hecht, T., Appelbaum, S. (1988) Observations on intraspecific agression and coeval sibling cannibalism by larval and juvenile Clarias gariepinus (Clariidae: Pisces) under controlled conditions. J Zoology London 214: 21-44
  • Hecht, T. and Uys, W. (1997) Effect of density on the feeding and aggressive behaviour in juvenile African catfish, Clarias gariepinus. South African J of Science 93: 537-541
  • Huntingford, F.A., Adams, C., Braithwaite, V.A., Kadri, S., Pottinger, T.G., Sandøe, P., Turnbull,J.F. (2006) Current issues in fish welfare. J Fish Biology 68: 332-372 doi:10.1111/j.0022-1112.2006.001046.x
  • Huntingford, F.A., Kadri, S. (2014) Defining, assessing and promoting the welfare of farmed fish. Rev. Sci. Tech. Off. Int. Epiz. 33 (1): 233-244Hur, J.W., Lim, H.K., Chang, Y.J. (2008) Effects of repetitive temperature changes on the stress response and growth of olive flounder, Paralichthys olivaceus. J Applied Animal Research 33: 49-54
  • Junge, R., König, B., Villarroel, M., Komives, T., Jijakli, M.H. (2017) Strategic Points in Aquaponics. Water 9: 182
  • Kadri, S., Mejdell, C.M., Damsgård, B. (2012) Guest Editor’s Introduction: BENEFISH: An Interdisciplinary Approach to Economic Modelling of Fish Welfare Management. Aquaculture Economics and Management16(4): 292-296 DOI: 10.1080/13657305.2012.729244
  • Kaiser, H., Weyl, O., Hecht, T. (1995) The effect of stocking density on growth, survival and agonistic behaviour of African catfish. Aquacultre International 3: 217-225
  • Kankainen, M., Berrill, I.K., Noble, C., Ruohonen, K., Setälä, J., Kole, A.P.W., Mejdell, C.M., Kadri, S., Turnbull, J.F. (2012a) Modeling the economic impact of welfare interventions in fish farming – a case study from the UK rainbow trout industry. Aquaculture Economics & Management 16(4):315-340 DOI 10.1080/13657305.2012.729248
  • Kankainen, M., Setälä, J., Berrill, I.K., Ruohonen, K., Noble, C., Schneider, O. (2012b) How to Measure The Economic Impacts Of Changes In Growth, Feed Efficiency And Survival In Aquaculture. Aquaculture Economics & Management 16(4): 341-364 DOI: 10.1080/13657305.2012.729247
  • Karimanzira, D., Keesman, K., Kloas, W., Baganz, D., Rauschenbach, T. (2016) Efficient and economical way of operating a recirculation aquaculture system in an aquaponics farm. Aquaculture Economics & Management 21 (4):470 486 DOI: 10.1080/13657305.2016.1259368Levenda, K. (2013) Legislation to protect the welfare of fish. Animal Law Review.20: 1-119
  • Liu, B., Liu, Y., Sun, G. (2017) Effects of stocking density on growth performance and welfare‐related physiological parameters of Atlantic salmon Salmo salar L. in recirculating aquaculture system. Aquaculture Research 48: 2133-2144 doi:10.1111/are.13050
  • Moshood, M.M. (2014) Aquaculture and Fish Welfare: Are the Rights of Fish Compromised?. Zoologica Poloniae 59 (1-4):49-68 DOI: 10.2478/zoop-2014-0005
  • Munguia-Fragozo, P., Alatorre-Jacome, O., Rico-Garcia, E. (2015) Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis. BioMed Res Int Article ID 480386 2015. doi.org/10.1155/2015/480386
  • Murray, F., Bostock, J., Fletcher, D. (2014) RAS Technologies and their commercial application – final report. www.stirlingaqua.com
  • Quagrainie, K.K., Flores, R.M.V., Kim, H.J., McClain, V. (2018) Economic analysis of aquaponics and hydroponics production in the U.S. Midwest. J Applied Aquaculture 30(1): 1-14, DOI: 10.1080/10454438.2017.1414009
  • Pickering, A.D. (1993) Growth and stress in fish production. Aquaculture 111(1–4):51-63
  • Poli, B.M. (2009) Farmed fish welfare-suffering assessment and impact on product quality, Italian J of Animal Science 8 sup1: 139-160 DOI: 10.4081/ijas.2009.s1.139
  • Röcklinsberg, H. (2015) Fish Consumption: Choices in the Intersection of Public Concern, Fish Welfare, Food Security, Human Health and Climate Change. J Agricultural and Environmental Ethics 28: 533–551
  • Schmautz, Z., Graber, A., Jaenicke, S., Goesmann, A., Junge, R., Smits, T.H.M. (2017) Microbial diversity in different compartments of an aquaponics system. Archive Microbiology 199: 613. https://doi.org/10.1007/s00203-016-1334-1
  • Sirakov, I., Lutz, M., Graber, A., Mathis, A., Staykov, Y., Smits, T.H.M., Junge, R. (2016) Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System. Water 8: 518 doi:10.3390/w8110518
  • Stien, L.H., Bracke, M.B., Folkedal, O., Nilsson, J., Oppedal, F., Torgersen, T., Kittilsen, S., Midtlyng, P.J., Vindas, M.A., Øverli, Ø., Kristiansen, T.S. (2013) Salmon Welfare Index Model (SWIM 1.0): a semantic model for overall welfare assessment of caged Atlantic salmon: review of the selected welfare indicators and model presentation. Reviews in Aquaculture 5:33-57. doi:10.1111/j.1753-5131.2012.01083.x
  • Segner, H., Sundh, H., Buchmann, K., Douxfils, J., Sundell, K.S., Mathieu, C., Ruane, N., Jutfelt, F., Toften, H., Vaugh, L. (2012) Health of farmed fish: its relation to fish welfare and its utility as a welfare indicator. Fish Physiology and Biochemistry 38: 85–105
  • Solgaard, H.S., Yang, Y. (2011) Consumers' perception of farmed fish and willingness to pay for fish welfare. British Food J 113 (8): 997-1010 doi.org/10.1108/00070701111153751Sommerville, C., Cohen, M., Pantanella, E., Stankus, A., Lovatelli, A. (2014) Small-Scale Aquaponic Food Production-Integrated Fish and Plant Farming. FAO Fisheries and Aquaculture Technical Paper No. 589 p 262
  • Valentia, C.W., Kimparab, J.M., Bruno, L.P., Valentid, M.V. (2018) Indicators of sustainability to assess aquaculture systems. Ecology Indicators 88:402-413
  • Van de Nieuwegiessen, P., Olwo, J., Khong, S. , Verreth, J.A.V., Schrama, J.W. (2009) Effects of age and stocking density on the welfare of African catfish, Clarias gariepinus Burchell. Aquaculture 288: 69–75Vetter, S., Vasa, L., Ozsvari, L. (2014) Economic Aspects of Animal Welfare. Acta Polytech Hungarica 11(7):119-134
  • Viegas, E.M.M., Pimenta, F.A., Previero, T.C., Gonçalves, L.U., Durães, J.P., Ribeiro, M.A.R., Oliveira, P.R.C. (2012) Slaughter methods and fish meat quality Archivos de Zootecnia 61:41-50
  • Yildiz, H.Y., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., Parisi, G. (2017) Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water 9: 13.
  • Yildiz, H.Y., Bekcan, S. (2017) Role of stocking density of tilapia (Oreochromis aureus) on fish growth, water quality and tomato (Solanum lycopersicum) plant biomass in the aquaponic system. Int J of Environment, Agriculture and Biotechnology 2(6): 2819-2824
Year 2019, Volume: 2 Issue: 1, 27 - 38, 30.01.2019

Abstract

References

  • Alfnes, F., Chen, X., Rickertsen, K. (2017) Labeling farmed seafood:A review. Aquaculture Economics and Management 22(1): 1-26 DOI: 10.1080/13657305.2017.1356398
  • Anonymous (1979) Opinion on the Welfare of the Farmed Fish. Farm Animal Welfare Committee. February 2014. Available online: www.defra.gov.uk/fawc
  • Anonymous (2017) Welfare of farmed fish: Common practices during transport and at slaughter. SANTE/2016/G2/009, September 2017 doi: 10.2875/172078
  • Costas, B., Araga, C., Mancera, J.M., Dinis, M.T., Conceica, L.E.C. (2008) High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles. Aquaculture Research 39: 1–9
  • Dykes, A. (2012) Cost and Benefits of Fish Welfare – A Producer’s Perspective. Aquacult Econ & Manag 16 (4): 429-432 DOI: 10.1080/13657305.2012.729246
  • d’Orbcastel, E.R., Blancheton, J.P., Belaud, A. (2009) Water quality and rainbow trout performance in a Danish Model Farm recirculating system: Comparison with a flow through system. Aquacultural Engineering 40: 135–143
  • EFSA (2004) Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to the welfare of animals during transport. Question N° EFSA-Q-2003-094. The EFSA Journal 44: 181Ellis, T., North, B., Scott, A.P., Bromage, N.R., Porter, M., Gadd, D. (2002) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biology 61: 493-531
  • Ellis, T., Yildiz, H.Y., López-Olmeda, J., Spedicato, M.T., Tort, L., Øverli, Ø., Martins, C. (2012a) Cortisol and fish welfare. Fish Physiology Biochemistry 38:163–188
  • Ellis, T., Berrill, I., Lines, J., Turnbull, J.F., Knowles, T.G. (2012b) Mortality and fish welfare. Fish Physiology Biochemistry. 38(1):189-99 doi: 10.1007/s10695-011-9547-3
  • Feucte, Y. and Zander, K. (2015) Of earth ponds, flow-through and closed recirculation systems—German consumers' understanding of sustainable aquaculture and its communication. Aquaculture 438:151-158
  • Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K.V., Jijakli, M.H., Thorarinsdottir, R. (2015) Challenges of Sustainable and Commercial Aquaponics. Sustainability 7: 4199-4224 doi:10.3390/su7044199
  • Handeland,S.O., Imsland, A.K., Stefansson, S.O. (2008) The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283:36-42
  • Hecht, T., Appelbaum, S. (1988) Observations on intraspecific agression and coeval sibling cannibalism by larval and juvenile Clarias gariepinus (Clariidae: Pisces) under controlled conditions. J Zoology London 214: 21-44
  • Hecht, T. and Uys, W. (1997) Effect of density on the feeding and aggressive behaviour in juvenile African catfish, Clarias gariepinus. South African J of Science 93: 537-541
  • Huntingford, F.A., Adams, C., Braithwaite, V.A., Kadri, S., Pottinger, T.G., Sandøe, P., Turnbull,J.F. (2006) Current issues in fish welfare. J Fish Biology 68: 332-372 doi:10.1111/j.0022-1112.2006.001046.x
  • Huntingford, F.A., Kadri, S. (2014) Defining, assessing and promoting the welfare of farmed fish. Rev. Sci. Tech. Off. Int. Epiz. 33 (1): 233-244Hur, J.W., Lim, H.K., Chang, Y.J. (2008) Effects of repetitive temperature changes on the stress response and growth of olive flounder, Paralichthys olivaceus. J Applied Animal Research 33: 49-54
  • Junge, R., König, B., Villarroel, M., Komives, T., Jijakli, M.H. (2017) Strategic Points in Aquaponics. Water 9: 182
  • Kadri, S., Mejdell, C.M., Damsgård, B. (2012) Guest Editor’s Introduction: BENEFISH: An Interdisciplinary Approach to Economic Modelling of Fish Welfare Management. Aquaculture Economics and Management16(4): 292-296 DOI: 10.1080/13657305.2012.729244
  • Kaiser, H., Weyl, O., Hecht, T. (1995) The effect of stocking density on growth, survival and agonistic behaviour of African catfish. Aquacultre International 3: 217-225
  • Kankainen, M., Berrill, I.K., Noble, C., Ruohonen, K., Setälä, J., Kole, A.P.W., Mejdell, C.M., Kadri, S., Turnbull, J.F. (2012a) Modeling the economic impact of welfare interventions in fish farming – a case study from the UK rainbow trout industry. Aquaculture Economics & Management 16(4):315-340 DOI 10.1080/13657305.2012.729248
  • Kankainen, M., Setälä, J., Berrill, I.K., Ruohonen, K., Noble, C., Schneider, O. (2012b) How to Measure The Economic Impacts Of Changes In Growth, Feed Efficiency And Survival In Aquaculture. Aquaculture Economics & Management 16(4): 341-364 DOI: 10.1080/13657305.2012.729247
  • Karimanzira, D., Keesman, K., Kloas, W., Baganz, D., Rauschenbach, T. (2016) Efficient and economical way of operating a recirculation aquaculture system in an aquaponics farm. Aquaculture Economics & Management 21 (4):470 486 DOI: 10.1080/13657305.2016.1259368Levenda, K. (2013) Legislation to protect the welfare of fish. Animal Law Review.20: 1-119
  • Liu, B., Liu, Y., Sun, G. (2017) Effects of stocking density on growth performance and welfare‐related physiological parameters of Atlantic salmon Salmo salar L. in recirculating aquaculture system. Aquaculture Research 48: 2133-2144 doi:10.1111/are.13050
  • Moshood, M.M. (2014) Aquaculture and Fish Welfare: Are the Rights of Fish Compromised?. Zoologica Poloniae 59 (1-4):49-68 DOI: 10.2478/zoop-2014-0005
  • Munguia-Fragozo, P., Alatorre-Jacome, O., Rico-Garcia, E. (2015) Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis. BioMed Res Int Article ID 480386 2015. doi.org/10.1155/2015/480386
  • Murray, F., Bostock, J., Fletcher, D. (2014) RAS Technologies and their commercial application – final report. www.stirlingaqua.com
  • Quagrainie, K.K., Flores, R.M.V., Kim, H.J., McClain, V. (2018) Economic analysis of aquaponics and hydroponics production in the U.S. Midwest. J Applied Aquaculture 30(1): 1-14, DOI: 10.1080/10454438.2017.1414009
  • Pickering, A.D. (1993) Growth and stress in fish production. Aquaculture 111(1–4):51-63
  • Poli, B.M. (2009) Farmed fish welfare-suffering assessment and impact on product quality, Italian J of Animal Science 8 sup1: 139-160 DOI: 10.4081/ijas.2009.s1.139
  • Röcklinsberg, H. (2015) Fish Consumption: Choices in the Intersection of Public Concern, Fish Welfare, Food Security, Human Health and Climate Change. J Agricultural and Environmental Ethics 28: 533–551
  • Schmautz, Z., Graber, A., Jaenicke, S., Goesmann, A., Junge, R., Smits, T.H.M. (2017) Microbial diversity in different compartments of an aquaponics system. Archive Microbiology 199: 613. https://doi.org/10.1007/s00203-016-1334-1
  • Sirakov, I., Lutz, M., Graber, A., Mathis, A., Staykov, Y., Smits, T.H.M., Junge, R. (2016) Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System. Water 8: 518 doi:10.3390/w8110518
  • Stien, L.H., Bracke, M.B., Folkedal, O., Nilsson, J., Oppedal, F., Torgersen, T., Kittilsen, S., Midtlyng, P.J., Vindas, M.A., Øverli, Ø., Kristiansen, T.S. (2013) Salmon Welfare Index Model (SWIM 1.0): a semantic model for overall welfare assessment of caged Atlantic salmon: review of the selected welfare indicators and model presentation. Reviews in Aquaculture 5:33-57. doi:10.1111/j.1753-5131.2012.01083.x
  • Segner, H., Sundh, H., Buchmann, K., Douxfils, J., Sundell, K.S., Mathieu, C., Ruane, N., Jutfelt, F., Toften, H., Vaugh, L. (2012) Health of farmed fish: its relation to fish welfare and its utility as a welfare indicator. Fish Physiology and Biochemistry 38: 85–105
  • Solgaard, H.S., Yang, Y. (2011) Consumers' perception of farmed fish and willingness to pay for fish welfare. British Food J 113 (8): 997-1010 doi.org/10.1108/00070701111153751Sommerville, C., Cohen, M., Pantanella, E., Stankus, A., Lovatelli, A. (2014) Small-Scale Aquaponic Food Production-Integrated Fish and Plant Farming. FAO Fisheries and Aquaculture Technical Paper No. 589 p 262
  • Valentia, C.W., Kimparab, J.M., Bruno, L.P., Valentid, M.V. (2018) Indicators of sustainability to assess aquaculture systems. Ecology Indicators 88:402-413
  • Van de Nieuwegiessen, P., Olwo, J., Khong, S. , Verreth, J.A.V., Schrama, J.W. (2009) Effects of age and stocking density on the welfare of African catfish, Clarias gariepinus Burchell. Aquaculture 288: 69–75Vetter, S., Vasa, L., Ozsvari, L. (2014) Economic Aspects of Animal Welfare. Acta Polytech Hungarica 11(7):119-134
  • Viegas, E.M.M., Pimenta, F.A., Previero, T.C., Gonçalves, L.U., Durães, J.P., Ribeiro, M.A.R., Oliveira, P.R.C. (2012) Slaughter methods and fish meat quality Archivos de Zootecnia 61:41-50
  • Yildiz, H.Y., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., Parisi, G. (2017) Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water 9: 13.
  • Yildiz, H.Y., Bekcan, S. (2017) Role of stocking density of tilapia (Oreochromis aureus) on fish growth, water quality and tomato (Solanum lycopersicum) plant biomass in the aquaponic system. Int J of Environment, Agriculture and Biotechnology 2(6): 2819-2824
There are 40 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Review Articles
Authors

Hijran Yavuzcan 0000-0001-6567-7467

Süleyman Bekcan

Publication Date January 30, 2019
Submission Date October 18, 2018
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Yavuzcan, H., & Bekcan, S. (2019). Interactions Between Economy and Fish Welfare in Aquaponics Systems. Mediterranean Fisheries and Aquaculture Research, 2(1), 27-38. https://doi.org//medfar.v2i42937.472015

MedFAR is published by Mersin University, Faculty of Fisheries in English and Turkish. MedFAR does not apply any kind of publication charges.  

Articles Published in MedFAR are Licensed under Creative Common Licence

by-nc.svg


Flag Counter