Research Article
BibTex RIS Cite

Installation of Operational Processes for the Establishment of Microalgal Culture Collection

Year 2019, Volume: 2 Issue: 2, 49 - 62, 28.05.2019

Abstract

Microalgae are the most common photosynthetic organisms which are available in all aquatic
systems
. Microalgae cultures are used in a
wide variety of industries due to their valuable chemical compounds.
Today microalgae are widely used
in scientific research, as learning resources for students and as raw materials
for industry. The science world and the industry
need cultures which are pure and identified with all of their characteristics
in order to utilise in those areas. Therefore, the microalgae culture
collections isolating and preserving microalgae cultures are needed
worldwide.
Considering these important
functions of cultural collections, efforts to create the Algal Culture
Collection started at Ahi Evran University (AEU-CCA).
Our
culture collection consists of totally 19 microalgae species belonging to the
phylums of Cyanobacteria,Chlorophyta, Charophyta and
and Bacillariophyta. Collecting microalgae from fresh
water bodies, their identification, isolation and arrangement of culture
conditions have begun to be carried out and it is a still-continuing process. While the microalgae are preserved
in broth medium by sub-culturing, their long-term preservation studies through
cryopreservation have begun. The present study mainly aims to
put isolated microalgae species at the disposal of scientific communities, to
conduct biotechnological studies and to arrange the microalgae culture
collection in order to maintain biological diversity. 
 

References

  • Afkar, E., Ababna, H., Fathi, A.A. (2010) Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. American Jour. of Env. Sci. 6(3): 230-237.
  • Ahmad, F., Khan, A.U., Yasar, A. (2013) The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Bot. 45(S1): 461-465.
  • Andersen, R.A., Kawachi, M. (2005) Traditional Microalgae Isolation Techniques. in: Andersen, R.A. (Eds.), Algal Culturing Techniques, Elsevier Press., London, pp. 83-100.
  • Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79-86.
  • Baykal Özer, T., Açıkgöz Erkaya I., Udoh, A.U., Yalçın Duygu, D., Akbulut, A., Bayramoğlu, G., Arıca, M.Y. (2012) Biosorption of Cr(VI) by free and immobilized Pediastrum boryanum biomass: equilibrium, kinetic, and thermodynamic studies. Environ Sci Pollut Res. 19: 2983-2993. DOI:10.1007/s11356-012-0809-0.
  • Becker, E.W. (2007) Microalgae as a source of protein. Biotech. Advan. 25: 207-210.
  • Becker, W. (2004) Microalgae in human and animal nutrition. in: Richmond, A. (Eds.), Handbook of microalgal culture: biotechnology and applied phycology, Blackwell Publishing, pp. 312-346.
  • Bhateja, P., Mathur, T., Pandaya, M., Fatma, T., Rattam, A. (2006) Activity of blue green algae microalgae extracts against in vitro generated S. aureus with reduced susceptibility to vancomycin. Fitoterapia. 77(3): 233-235.
  • Bourrelly, P. (1972) Les Algues D’eau Douce, Tome I: Les Algues Vertes E’ditions N. Boubee and Cie 3, Place Saint Andre Des Arts, France, 572p.
  • Borowitzka, M.A., Borowitzka, L.J. (1987) Vitamins and Fine Chemicals from Micro-Algae. in: Borowitzka, M.A., Borowitzka, L.J. (Eds.), Micro-Algal Biotechnology. Cambridge University Press., New York, 477p.
  • Caldwell, G.S. (2009) The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development. Mar. Drugs 7: 367-400. Chisti, M.Y. (2007) Biodiesel from microalgae. Biotechnology Advances pp.294-306.
  • Colla, L.M., Reinehr, C.O., Reichert, C., Costa, J.A.V. (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 98(7): 1489-1493.
  • Cox, E.J. (1996) Identification of Freshwater Diatoms From Live Material. Chapman and Hall, London, pp.1-158.
  • CSIRO (Commonwealth Scientific and Industrial Research Organisation) (2017). Website: http://www.csiro.au/ [accessed 28 July 2016].
  • Day, J.G. (2007) Cryopreservation of Microalgae and Cyanobacteria. in: Day, J.G., Stacey, G.N. (Eds.), Cryopreservation and Freeze-Drying Protocols. Humana Press Inc. Totowa, New Jersey, USA, pp. 141-151.
  • Delwiche, C.F. (2016) The genomes of charophyte green algae. Adv. Bot. Res. 78: 255-270. doi:10.1016/bs.abr.2016.02.002.
  • Domozych, D.S., Popper, Z.A., Sørensen, I. (2016) Charophytes: evolutionary giants and emerging model organisms. Frontiers In Plant Science 1-8. doi: 10.3389/fpls.2016.01470.
  • Duygu, D., Udoh, A.U., Özer Baykal, T., Akbulut, A., Erkaya Açıkgöz, I., Yıldız, K., Deniz, G. (2012) Fourier Transform Infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African J of Biotec. 11(16): 3817-3824.
  • Duygu Yalçın, D., Baykal, T., Açıkgöz I., Udoh, A.U., Yıldız, K. (2008) Stigeoclonium nanum (Dillwyn) Kützing 1849’un Fourier Transform Infrared Spektroskopisi ile tanımlanması. In: III. Ulusal Limnoloji Sempozyumu, Urla, İzmir, Turkey, pp. 29.
  • Erkaya Açıkgöz, I., Özer, T., Yalçın, D., Udoh, A.U. (2016) Determination of molecular heterogenerity in some microalgae using Fourier Transform Infrared Spectroscopy. In: 1st International Black Sea Congress On Environmental Sciences (IBCESS), Giresun, Turkey, pp.289.
  • Fedler, C.B., Parker, N.C. (1993) High-Value Produci Development From Biomass. (Paper No: 936056). An ASAE/CSAE Meeting Presentation, American Society of Agricultural Engineers USA.
  • Fraile, A., Penche, S., González, F., Blázquez, M.L., Muñoz, J.A., Ballester, A. (2005) Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chemistry and Ecology 21(1): 61-75.
  • Friedl, T., Lorenz, M. (2012) The culture collection of algae at Göttingen University (SAG): a biological resource for biotechnological and biodiversity research. Procedia Environmental Sciences 15: 110-117.
  • Gartner, G. (1958) The culture collection of algae at the Botanical Institute of the University at Innsbruck (Austria). Ber.nat.-med. Vercin Innsbruck 72: 33-52.Gao, Y., Gregor, C., Liang, Y., Tang, T.C. (2012) Algae biodiesel-a feasibility report. Chem. Cent. J. 6: 1-16.
  • Guedes, A.C., Malcata, F.X. (2012) Nutritional value and uses of microalgae in aquaculture. Website:http://www.intechopen.com/books/aquaculture/nutritional-value-and-uses -of-microalgae-in-aquaculture [accessed 15 May 2016].
  • Guillard, R.R.L. (2005) Purification Methods for Microalgae. in: Andersen, R.A. (Eds.), Algal Culturing Techniques. Elsevier Press, London, pp. 117-132. Huber-Pestalozzi, G. (1938) Das Phytoplankton Des Süβwassers, 1. Teil E. Schweizerbartsche Verlagsbuchhandlung, Germany, pp. 1-342. Huber–Pestalozzi, G. (1955) Das Phytoplankton Des Süβwassers, 4. Teil Euglenophyceen, E. Schweizerbart’sche Verlagsbuchhandlung, Germany, pp.1-1135.
  • Huber–Pestalozzi, G. (1982) Das Phytoplankton Des Süβwassers, 8. Teil Conjugatophyceae, Zynematales and Desmidiales, E. Schweizerbart’sche Verlagsbuchhandlung, Germany, pp.1-542.
  • Hur, S.B., Bae, J.H., Youn, J.Y., Jo, M.J. (2015) KMMCC-Korea Marine Microalgae Culture Center: list of strains, 2nd edition. Algae, S1-S188.
  • Klinthong, W., Yang, Y.H., Huang, C.H., Tan, C.S. (2015) A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol and Air Quality Research 15: 712-742. doi: 10.4209/aaqr.2014.11.0299.
  • Krammer, K., Lange-Bertalot, H. (1991a) Süβwasserflora von Mitteleuropa, Bacillariophyceae Band 2/3, 3. Teil: Centrales, Fragilariaceae, Gustav Fischer Verlag, Stuttgart pp.1-576.
  • Krammer, K., Lange-Bertalot, H. (1991b) Süβwassers von Mitteleuropa, Bacillariophyceae Band 2/4, 4. Teil: Achnanthaceae, Kritische. Ergönzungen zu Navicula (Lineolatatae) ubnd Gomphonema Gesamtliteraturverzeichnis, Gustav Fischer Verlag, Stuttgart pp.1-436.
  • Krammer, K., Lange–Bertalot, H. (1999a) Süβwasserflora von Mitteleuropa, Bacillariophyceae, Band 2/1, 1. Teil: Naviculaceae, Gustav Fischer Verlag, Stuttgart pp.1-876.
  • Krammer, K., Lange–Bertalot, H. (1999b) Süβwasserflora von Mitteleuropa, Bacillariophyceae, Band 2/2, 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, Gustav Fischer Verlag, Stuttgart pp.1-584.
  • Kumar, P., Angadi, S.B., Vidyasagar, G.M. (2006) Antimicrobial activity of blue-green algae. Indian J. Pharma. Sci. 68(5): 647-648.
  • Li, H.Y., Lu, Y., Zheng, J.W., Yang, W.D., Liu, J.S. (2014) Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar. Drugs 12: 153-166. doi:10.3390/md12010153.
  • Liang, S., Liu, X., Chen, F., Chen, Z. (2004) Current microalgal health food randd activities in China. Hydrobiologia. 512: 45-48.
  • Madhyastha, H.K., Vatsala, T.M. (2007) Pigment production in Spirulina fussiformis in different photophysical conditions. Biomol. Eng. 24(3): 301-305.
  • Makarevičienė, V., Andrulevičiūtė, V., Skorupskaitė, V., Kasperovičienė, J. (2011) Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potentional biofuel feedstock. Environ. Research, Engineering and Managemen. 3(57): 21-27.
  • Nakanishi, K., Deuchi, K., Kuwano, K. (2012) Cryopreservation of four valuable strains of microalgae, including viability and characteristics, during 15 years of cryostorage. J Appl Phycol. 24: 1381-1385. Doi: 10811-012-9790-8.9
  • Nichols, H.W. (1973). Growth Media-Freshwater. in: Stein, J.R. (Eds.), Handbook of Phycological Methods: Culture Methods and Growth Measurements. UK: Cambridge University Press. pp.7-24.
  • Norton, T.A., Melkonian, M., Andersen, R.A. (1996) Algal biodiversity. Phycologia, 35(4): 308-326.
  • Noue, J.D.L., Proulx, D. (1988) Biological tertiary treatment of urban waste water with chitosan- immobilized Phormidium. Appl Microbiol Biotechnol. 29: 292-297.
  • OECD, (Organisation for Economic Co-Operation and Development) (2007). OECD Best Practice Guidelines for Biological Resource Centres. Retrieved from Website: http://www.oecd.org/sti/biotech/oecdbestpracticeguidelinesforbiologicalresourcecentres.htm [accessed 15 May 2016].
  • Ordog, V., Stirk, W.A., Lenobel, R., Bancírová, M., Strnad, M., van Staden, J., Szigeti, J., Németh, L. (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol. 16: 309-314.
  • Özer, T., Yalçın, D., Açıkgöz Erkaya, İ, Udoh, A.U. (2016). Identification and characterization of some species of Cyanobacteria, Chlorophyta and Bacillariophyta using Fourier-Transform Infrared (FTIR) Spectroscopy. IOSR Journal of Pharmacy and Biological Science 11(6): 20-27.
  • Park, J.H., Yoon, J.J., Park, H.D., Kim, Y.J., Lim, D.J. (2011) Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrogen Energy. 36: 13997-14003.Patrick, R., Reimer, C.W. (1975) The Diatoms of The United States. Acad. Nat. Sci. Philadelphia Monogr. pp. 1-212.
  • Ponnuswamy, I., Madhavan, S., Shabudeen, S. (2013) Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production. International Journal of Bio-Science and Bio-Technology 5(2): 17-26.
  • Prescott, G.W. (1975) Algae of The Western Great Lakes Area. W.M.C. Michigan Brown Company Publishers, pp.1-977.
  • Rangel-Yagui, C.O., Danesi, E.D.G., Carvalho, J.C.M., Sato, S. (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour. Technol. 92(2): 133-141.
  • Rania, M.A., Hala, M.T. (2008) Antibacterial and antifungal activity of cynobacteria and green microalgae evaluation of medium components by plackett-burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry. 3(1): 22-31.
  • Rastoll, M.J., Ouahid, Y., Martín-Gordillo, F., Ramos, V., Vasconcelos, V., Campo, F.F. (2013) The development of a cryopreservation method suitable for a large cyanobacteria collection. J Appl Phycol. 25: 1483-1493. Doi: 10.1007/s10811-013-0001-z.
  • Sajilata, M.G., Singhal, R.S., Kamat, M.Y. (2008) Fractionation of lipids and purification of ã-linolenicacid (GLA) from Spirulina platensis. Food Chem. 109(3): 580-586.Salas-Leiva, J.S., Dupré, E. (2011) Cryopreservation of the microalgae Chaetoceros calcitrans (Paulsen): analysis of the effect of DMSO emperature and light regime during different equilibrium periods. Lat. Am. J. Aquat. Res. 39(2): 271-279.
  • Sharma, P., Khetmalas, M.B., Tandon, G.D. (2013) Biofuels from green microalgae. Prospects and applications. 95-112.
  • Sigee, D.C., Dean, A., Levado, E., Tobin, M.J. (2002) Fourier-Transform Infrared Microscopy of Pediastrum dublex: characterization of a micro-population isolated from a eutrophic lake. European Journal of Phycology. 37: 19-26.
  • Shelef, G., Soeder, C. (1980) Algal Biomass-Production and Uses. Amsterdam, Elsevier/North- Biomedical press, Holland, 852p.
  • Sirakov, I., Velichkova, K., Stoyanova, S., Staykov, Y. (2015) The importance of microalgae for aquaculture industry. Inter. J. of Fisheries and Aquatic Studies 2(4): 81-84.
  • Stolz, P., Obermayer, B. (2005) Manufacturing microalgae for skin care. Cosmetics Toiletries 120: 99-106.
  • Tiwari, A., Sharma, A. (2013) Antifungal activity of Anabaena variabilis against plant pathogens. Int. J. Pharm. Bio. Sci. 4 (2): 1030-1036.
  • Udoh, A.U., Yalçın, D., Baykal Özer, T., Açıkgöz, İ., Yıldız, K., Dean, A.P. (2014) Farklı tatlısu kaynaklarından izole edilen alg türlerinin genetik analizleri. In: VI. Ulusal Limnoloji Sempozyumu, Bursa, PB36, 104.
  • UTEX (Culture Collection of Algae at The University of Texas) (2017). Website: https://utex.org/pages/algal-collections [accessed 11 June 2016].
  • Velichkova K, Sirakov I, Stoyanova S (2014). Biomass production and wastewater treatment from aquaculture with Chlorella vulgaris under different carbon sources. Scientific Bulletin. Series F. Biotechnologies. 18: 83-88.
  • Vijayakumar, S. (2005) Studies on Cyanobacteria in Industrial Effluents – An Environmental and Molecular Approach (PhD Thesis). Bharathidasan University, Tiruchirapalli, Tamil Nadu, India. 97p.
  • Vijayakumar, S. (2012) Potential applications of cyanobacteria in industrial effluents-a review. Bioremediation and Biodegradation J Bioremed Biodeg, 3:6.
  • WHO, (2016). Methods of Sterilization. The International Pharmacopoeia. Website: http://apps.who.int/phint/en/p/about/ [accessed 11 June 2016].
  • Yalçın, D., Baykal Özer, T., Açıkgöz, İ., Udoh, A.U., Yıldız, K. (2014). Jaaginema lemmermannii (Woloszynska) Anagnostidis and Komarek ve Phormidium autumnale (C.Agardh) Trevisan ex Gomont Alglerinde FTIR kullanılarak moleküler farklılıklarının tanımlanması. In: VI. Ulusal Limnoloji Sempozyumu, Bursa, SB10, p16.
  • Yalçın, D., Baykal Özer, T., Açıkgöz, I., Yıldız, K. (2007) Çeşitli tatlısu kaynaklarından izole edilen mikroalglerin üretilmeleri ve FTIR analizleri. XIV. In: Ulusal Su Ürünleri Sempozyumu, Muğla Üniversitesi Su Ürünleri Fakültesi, 292p.
  • Yalçın, D., Özer, T., Açıkgöz Erkaya, I., Kayış, A.F., Yalçınkaya, O. (2016) Heavy metal biosorption of copper ions by immobilized biomass of Stichococcus subtilis. In: 1st International Black Sea Congress on Environmental Sciences (IBCESS) Giresun, Turkey, 201P.
Year 2019, Volume: 2 Issue: 2, 49 - 62, 28.05.2019

Abstract

References

  • Afkar, E., Ababna, H., Fathi, A.A. (2010) Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. American Jour. of Env. Sci. 6(3): 230-237.
  • Ahmad, F., Khan, A.U., Yasar, A. (2013) The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Bot. 45(S1): 461-465.
  • Andersen, R.A., Kawachi, M. (2005) Traditional Microalgae Isolation Techniques. in: Andersen, R.A. (Eds.), Algal Culturing Techniques, Elsevier Press., London, pp. 83-100.
  • Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79-86.
  • Baykal Özer, T., Açıkgöz Erkaya I., Udoh, A.U., Yalçın Duygu, D., Akbulut, A., Bayramoğlu, G., Arıca, M.Y. (2012) Biosorption of Cr(VI) by free and immobilized Pediastrum boryanum biomass: equilibrium, kinetic, and thermodynamic studies. Environ Sci Pollut Res. 19: 2983-2993. DOI:10.1007/s11356-012-0809-0.
  • Becker, E.W. (2007) Microalgae as a source of protein. Biotech. Advan. 25: 207-210.
  • Becker, W. (2004) Microalgae in human and animal nutrition. in: Richmond, A. (Eds.), Handbook of microalgal culture: biotechnology and applied phycology, Blackwell Publishing, pp. 312-346.
  • Bhateja, P., Mathur, T., Pandaya, M., Fatma, T., Rattam, A. (2006) Activity of blue green algae microalgae extracts against in vitro generated S. aureus with reduced susceptibility to vancomycin. Fitoterapia. 77(3): 233-235.
  • Bourrelly, P. (1972) Les Algues D’eau Douce, Tome I: Les Algues Vertes E’ditions N. Boubee and Cie 3, Place Saint Andre Des Arts, France, 572p.
  • Borowitzka, M.A., Borowitzka, L.J. (1987) Vitamins and Fine Chemicals from Micro-Algae. in: Borowitzka, M.A., Borowitzka, L.J. (Eds.), Micro-Algal Biotechnology. Cambridge University Press., New York, 477p.
  • Caldwell, G.S. (2009) The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development. Mar. Drugs 7: 367-400. Chisti, M.Y. (2007) Biodiesel from microalgae. Biotechnology Advances pp.294-306.
  • Colla, L.M., Reinehr, C.O., Reichert, C., Costa, J.A.V. (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 98(7): 1489-1493.
  • Cox, E.J. (1996) Identification of Freshwater Diatoms From Live Material. Chapman and Hall, London, pp.1-158.
  • CSIRO (Commonwealth Scientific and Industrial Research Organisation) (2017). Website: http://www.csiro.au/ [accessed 28 July 2016].
  • Day, J.G. (2007) Cryopreservation of Microalgae and Cyanobacteria. in: Day, J.G., Stacey, G.N. (Eds.), Cryopreservation and Freeze-Drying Protocols. Humana Press Inc. Totowa, New Jersey, USA, pp. 141-151.
  • Delwiche, C.F. (2016) The genomes of charophyte green algae. Adv. Bot. Res. 78: 255-270. doi:10.1016/bs.abr.2016.02.002.
  • Domozych, D.S., Popper, Z.A., Sørensen, I. (2016) Charophytes: evolutionary giants and emerging model organisms. Frontiers In Plant Science 1-8. doi: 10.3389/fpls.2016.01470.
  • Duygu, D., Udoh, A.U., Özer Baykal, T., Akbulut, A., Erkaya Açıkgöz, I., Yıldız, K., Deniz, G. (2012) Fourier Transform Infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African J of Biotec. 11(16): 3817-3824.
  • Duygu Yalçın, D., Baykal, T., Açıkgöz I., Udoh, A.U., Yıldız, K. (2008) Stigeoclonium nanum (Dillwyn) Kützing 1849’un Fourier Transform Infrared Spektroskopisi ile tanımlanması. In: III. Ulusal Limnoloji Sempozyumu, Urla, İzmir, Turkey, pp. 29.
  • Erkaya Açıkgöz, I., Özer, T., Yalçın, D., Udoh, A.U. (2016) Determination of molecular heterogenerity in some microalgae using Fourier Transform Infrared Spectroscopy. In: 1st International Black Sea Congress On Environmental Sciences (IBCESS), Giresun, Turkey, pp.289.
  • Fedler, C.B., Parker, N.C. (1993) High-Value Produci Development From Biomass. (Paper No: 936056). An ASAE/CSAE Meeting Presentation, American Society of Agricultural Engineers USA.
  • Fraile, A., Penche, S., González, F., Blázquez, M.L., Muñoz, J.A., Ballester, A. (2005) Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chemistry and Ecology 21(1): 61-75.
  • Friedl, T., Lorenz, M. (2012) The culture collection of algae at Göttingen University (SAG): a biological resource for biotechnological and biodiversity research. Procedia Environmental Sciences 15: 110-117.
  • Gartner, G. (1958) The culture collection of algae at the Botanical Institute of the University at Innsbruck (Austria). Ber.nat.-med. Vercin Innsbruck 72: 33-52.Gao, Y., Gregor, C., Liang, Y., Tang, T.C. (2012) Algae biodiesel-a feasibility report. Chem. Cent. J. 6: 1-16.
  • Guedes, A.C., Malcata, F.X. (2012) Nutritional value and uses of microalgae in aquaculture. Website:http://www.intechopen.com/books/aquaculture/nutritional-value-and-uses -of-microalgae-in-aquaculture [accessed 15 May 2016].
  • Guillard, R.R.L. (2005) Purification Methods for Microalgae. in: Andersen, R.A. (Eds.), Algal Culturing Techniques. Elsevier Press, London, pp. 117-132. Huber-Pestalozzi, G. (1938) Das Phytoplankton Des Süβwassers, 1. Teil E. Schweizerbartsche Verlagsbuchhandlung, Germany, pp. 1-342. Huber–Pestalozzi, G. (1955) Das Phytoplankton Des Süβwassers, 4. Teil Euglenophyceen, E. Schweizerbart’sche Verlagsbuchhandlung, Germany, pp.1-1135.
  • Huber–Pestalozzi, G. (1982) Das Phytoplankton Des Süβwassers, 8. Teil Conjugatophyceae, Zynematales and Desmidiales, E. Schweizerbart’sche Verlagsbuchhandlung, Germany, pp.1-542.
  • Hur, S.B., Bae, J.H., Youn, J.Y., Jo, M.J. (2015) KMMCC-Korea Marine Microalgae Culture Center: list of strains, 2nd edition. Algae, S1-S188.
  • Klinthong, W., Yang, Y.H., Huang, C.H., Tan, C.S. (2015) A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol and Air Quality Research 15: 712-742. doi: 10.4209/aaqr.2014.11.0299.
  • Krammer, K., Lange-Bertalot, H. (1991a) Süβwasserflora von Mitteleuropa, Bacillariophyceae Band 2/3, 3. Teil: Centrales, Fragilariaceae, Gustav Fischer Verlag, Stuttgart pp.1-576.
  • Krammer, K., Lange-Bertalot, H. (1991b) Süβwassers von Mitteleuropa, Bacillariophyceae Band 2/4, 4. Teil: Achnanthaceae, Kritische. Ergönzungen zu Navicula (Lineolatatae) ubnd Gomphonema Gesamtliteraturverzeichnis, Gustav Fischer Verlag, Stuttgart pp.1-436.
  • Krammer, K., Lange–Bertalot, H. (1999a) Süβwasserflora von Mitteleuropa, Bacillariophyceae, Band 2/1, 1. Teil: Naviculaceae, Gustav Fischer Verlag, Stuttgart pp.1-876.
  • Krammer, K., Lange–Bertalot, H. (1999b) Süβwasserflora von Mitteleuropa, Bacillariophyceae, Band 2/2, 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, Gustav Fischer Verlag, Stuttgart pp.1-584.
  • Kumar, P., Angadi, S.B., Vidyasagar, G.M. (2006) Antimicrobial activity of blue-green algae. Indian J. Pharma. Sci. 68(5): 647-648.
  • Li, H.Y., Lu, Y., Zheng, J.W., Yang, W.D., Liu, J.S. (2014) Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar. Drugs 12: 153-166. doi:10.3390/md12010153.
  • Liang, S., Liu, X., Chen, F., Chen, Z. (2004) Current microalgal health food randd activities in China. Hydrobiologia. 512: 45-48.
  • Madhyastha, H.K., Vatsala, T.M. (2007) Pigment production in Spirulina fussiformis in different photophysical conditions. Biomol. Eng. 24(3): 301-305.
  • Makarevičienė, V., Andrulevičiūtė, V., Skorupskaitė, V., Kasperovičienė, J. (2011) Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potentional biofuel feedstock. Environ. Research, Engineering and Managemen. 3(57): 21-27.
  • Nakanishi, K., Deuchi, K., Kuwano, K. (2012) Cryopreservation of four valuable strains of microalgae, including viability and characteristics, during 15 years of cryostorage. J Appl Phycol. 24: 1381-1385. Doi: 10811-012-9790-8.9
  • Nichols, H.W. (1973). Growth Media-Freshwater. in: Stein, J.R. (Eds.), Handbook of Phycological Methods: Culture Methods and Growth Measurements. UK: Cambridge University Press. pp.7-24.
  • Norton, T.A., Melkonian, M., Andersen, R.A. (1996) Algal biodiversity. Phycologia, 35(4): 308-326.
  • Noue, J.D.L., Proulx, D. (1988) Biological tertiary treatment of urban waste water with chitosan- immobilized Phormidium. Appl Microbiol Biotechnol. 29: 292-297.
  • OECD, (Organisation for Economic Co-Operation and Development) (2007). OECD Best Practice Guidelines for Biological Resource Centres. Retrieved from Website: http://www.oecd.org/sti/biotech/oecdbestpracticeguidelinesforbiologicalresourcecentres.htm [accessed 15 May 2016].
  • Ordog, V., Stirk, W.A., Lenobel, R., Bancírová, M., Strnad, M., van Staden, J., Szigeti, J., Németh, L. (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol. 16: 309-314.
  • Özer, T., Yalçın, D., Açıkgöz Erkaya, İ, Udoh, A.U. (2016). Identification and characterization of some species of Cyanobacteria, Chlorophyta and Bacillariophyta using Fourier-Transform Infrared (FTIR) Spectroscopy. IOSR Journal of Pharmacy and Biological Science 11(6): 20-27.
  • Park, J.H., Yoon, J.J., Park, H.D., Kim, Y.J., Lim, D.J. (2011) Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrogen Energy. 36: 13997-14003.Patrick, R., Reimer, C.W. (1975) The Diatoms of The United States. Acad. Nat. Sci. Philadelphia Monogr. pp. 1-212.
  • Ponnuswamy, I., Madhavan, S., Shabudeen, S. (2013) Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production. International Journal of Bio-Science and Bio-Technology 5(2): 17-26.
  • Prescott, G.W. (1975) Algae of The Western Great Lakes Area. W.M.C. Michigan Brown Company Publishers, pp.1-977.
  • Rangel-Yagui, C.O., Danesi, E.D.G., Carvalho, J.C.M., Sato, S. (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour. Technol. 92(2): 133-141.
  • Rania, M.A., Hala, M.T. (2008) Antibacterial and antifungal activity of cynobacteria and green microalgae evaluation of medium components by plackett-burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry. 3(1): 22-31.
  • Rastoll, M.J., Ouahid, Y., Martín-Gordillo, F., Ramos, V., Vasconcelos, V., Campo, F.F. (2013) The development of a cryopreservation method suitable for a large cyanobacteria collection. J Appl Phycol. 25: 1483-1493. Doi: 10.1007/s10811-013-0001-z.
  • Sajilata, M.G., Singhal, R.S., Kamat, M.Y. (2008) Fractionation of lipids and purification of ã-linolenicacid (GLA) from Spirulina platensis. Food Chem. 109(3): 580-586.Salas-Leiva, J.S., Dupré, E. (2011) Cryopreservation of the microalgae Chaetoceros calcitrans (Paulsen): analysis of the effect of DMSO emperature and light regime during different equilibrium periods. Lat. Am. J. Aquat. Res. 39(2): 271-279.
  • Sharma, P., Khetmalas, M.B., Tandon, G.D. (2013) Biofuels from green microalgae. Prospects and applications. 95-112.
  • Sigee, D.C., Dean, A., Levado, E., Tobin, M.J. (2002) Fourier-Transform Infrared Microscopy of Pediastrum dublex: characterization of a micro-population isolated from a eutrophic lake. European Journal of Phycology. 37: 19-26.
  • Shelef, G., Soeder, C. (1980) Algal Biomass-Production and Uses. Amsterdam, Elsevier/North- Biomedical press, Holland, 852p.
  • Sirakov, I., Velichkova, K., Stoyanova, S., Staykov, Y. (2015) The importance of microalgae for aquaculture industry. Inter. J. of Fisheries and Aquatic Studies 2(4): 81-84.
  • Stolz, P., Obermayer, B. (2005) Manufacturing microalgae for skin care. Cosmetics Toiletries 120: 99-106.
  • Tiwari, A., Sharma, A. (2013) Antifungal activity of Anabaena variabilis against plant pathogens. Int. J. Pharm. Bio. Sci. 4 (2): 1030-1036.
  • Udoh, A.U., Yalçın, D., Baykal Özer, T., Açıkgöz, İ., Yıldız, K., Dean, A.P. (2014) Farklı tatlısu kaynaklarından izole edilen alg türlerinin genetik analizleri. In: VI. Ulusal Limnoloji Sempozyumu, Bursa, PB36, 104.
  • UTEX (Culture Collection of Algae at The University of Texas) (2017). Website: https://utex.org/pages/algal-collections [accessed 11 June 2016].
  • Velichkova K, Sirakov I, Stoyanova S (2014). Biomass production and wastewater treatment from aquaculture with Chlorella vulgaris under different carbon sources. Scientific Bulletin. Series F. Biotechnologies. 18: 83-88.
  • Vijayakumar, S. (2005) Studies on Cyanobacteria in Industrial Effluents – An Environmental and Molecular Approach (PhD Thesis). Bharathidasan University, Tiruchirapalli, Tamil Nadu, India. 97p.
  • Vijayakumar, S. (2012) Potential applications of cyanobacteria in industrial effluents-a review. Bioremediation and Biodegradation J Bioremed Biodeg, 3:6.
  • WHO, (2016). Methods of Sterilization. The International Pharmacopoeia. Website: http://apps.who.int/phint/en/p/about/ [accessed 11 June 2016].
  • Yalçın, D., Baykal Özer, T., Açıkgöz, İ., Udoh, A.U., Yıldız, K. (2014). Jaaginema lemmermannii (Woloszynska) Anagnostidis and Komarek ve Phormidium autumnale (C.Agardh) Trevisan ex Gomont Alglerinde FTIR kullanılarak moleküler farklılıklarının tanımlanması. In: VI. Ulusal Limnoloji Sempozyumu, Bursa, SB10, p16.
  • Yalçın, D., Baykal Özer, T., Açıkgöz, I., Yıldız, K. (2007) Çeşitli tatlısu kaynaklarından izole edilen mikroalglerin üretilmeleri ve FTIR analizleri. XIV. In: Ulusal Su Ürünleri Sempozyumu, Muğla Üniversitesi Su Ürünleri Fakültesi, 292p.
  • Yalçın, D., Özer, T., Açıkgöz Erkaya, I., Kayış, A.F., Yalçınkaya, O. (2016) Heavy metal biosorption of copper ions by immobilized biomass of Stichococcus subtilis. In: 1st International Black Sea Congress on Environmental Sciences (IBCESS) Giresun, Turkey, 201P.
There are 67 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Dilek Yalçın Duygu

İlkay Açıkgöz Erkaya This is me

Tülay Özer

Publication Date May 28, 2019
Submission Date October 6, 2018
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Yalçın Duygu, D., Açıkgöz Erkaya, İ., & Özer, T. (2019). Installation of Operational Processes for the Establishment of Microalgal Culture Collection. Mediterranean Fisheries and Aquaculture Research, 2(2), 49-62. https://doi.org//medfar.v2i45471.467959

MedFAR is published by Mersin University, Faculty of Fisheries in English and Turkish. MedFAR does not apply any kind of publication charges.  

Articles Published in MedFAR are Licensed under Creative Common Licence

by-nc.svg


Flag Counter